Skip to main content
Log in

Different Solution Strategy for Solving Type-2 Fuzzy System of Differential Equations with Application in Arms Race Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we have considered a system of type-2 fuzzy differential equation (ST2FDE) to represent Richardson’s arms race model in type-2 fuzzy environment. A novel theorem on the type-2 fuzzy extension principle is presented here and the model has been solved by the \(gH_2\)-differentiability and extension principle techniques with proper numerical illustrations. Four sub-cases were addressed separately for the \(gH_2\)-differentiability. The solution obtained by both methods has been defuzzified using the regular weighted point defuzzification technique. Finally, the idea of the arms race model has been successfully implemented to a real-life problem on advertisement spending of competing mobile companies in the type-2 fuzzy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chakraborty, A., Mondal, S.P., Alam, S., Ahmadian, A., Senu, N., De, D., Salahshour, S.: The pentagonal fuzzy number: its different representations, properties, ranking, defuzzification and application in game problems. Symmetry 11(2), 248 (2019)

    Article  Google Scholar 

  2. Maity, S., Chakraborty, A., De, S.K., Mondal, S.P., Alam, S.: A Comprehensive Study of a Backlogging EOQ Model with Nonlinear Heptagonal Dense Fuzzy Environment, p. 54. Recherche Opérationnelle, RAIRO (2020)

    MATH  Google Scholar 

  3. Mondal, S.P.: Differential equation with interval valued fuzzy number and its applications. Int. J. Syst. Assur. Eng. Manag. 7(3), 370–386 (2016)

    Article  Google Scholar 

  4. Ghorui, N., Ghosh, A., Mondal, S.P., Bajuri, M.Y., Ahmadian, A., Salahshour, S., Ferrara, M.: Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Results Phys. 21, 103811 (2021)

    Article  Google Scholar 

  5. Maity, S., De, S.K., Prasad Mondal, S.: A study of an EOQ model under lock fuzzy environment. Mathematics 7(1), 75 (2019)

    Article  MathSciNet  Google Scholar 

  6. Tudu, S., Mondal, S.P., Ahmadian, A., Mahmood, A.K., Salahshour, S., Ferrara, M.: Solution of generalised type-2 Fuzzy boundary value problem. Alex. Eng. J. 60(2), 2725–2739 (2021)

    Article  Google Scholar 

  7. Rahaman, M., Mondal, S.P., Algehyne, E.A., Biswas, A., Alam, S.: A method for solving linear difference equation in Gaussian fuzzy environments. Granul. Comput. 1–14 (2021)

  8. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  9. Salahshour, S., Ahmadian, A., Pansera, B.A., Ferrara, M.: Uncertain inverse problem for fractional dynamical systems using perturbed collage theorem. Commun. Nonlinear Sci. Numer. Simul. 94, 105553 (2021)

    Article  MathSciNet  Google Scholar 

  10. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1372–1381 (2012)

    Article  MathSciNet  Google Scholar 

  11. Salahshour, S., Ahmadian, A., Ismail, F., Baleanu, D.: A fractional derivative with non-singular kernel for interval-valued functions under uncertainty. Optik 130, 273–286 (2017)

    Article  Google Scholar 

  12. Ahmadian, A., Chan, C.S., Salahshour, S., Vaitheeswaran, V.: FTFBE: a numerical approximation for fuzzy time-fractional Bloch equation. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp. 418–423. IEEE (2014)

  13. Allahviranloo, T., Salahshour, S.: Euler method for solving hybrid fuzzy differential equation. Soft. Comput. 15(7), 1247–1253 (2011)

    Article  Google Scholar 

  14. Chang, S.S., Zadeh, L.A.: On fuzzy mapping and control. In: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, pp. 180–184 (1996)

  15. Rasoulizadeh, M.N., Nikan, O., Avazzadeh, Z.: The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation. Math. Sci. 1–12 (2021)

  16. Rasoulizadeh, M.N., Rashidinia, J.: Numerical solution for the Kawahara equation using local RBF-FD meshless method. J. King Saud Univ.-Sci. 32(4), 2277–2283 (2020)

    Article  Google Scholar 

  17. Rashidinia, J., Rasoulizadeh, M.N.: Numerical methods based on radial basis function-generated finite difference (RBF-FD) for solution of GKdVB equation. Wave Motion 90, 152–167 (2019)

    Article  MathSciNet  Google Scholar 

  18. Can, N.H., Nikan, O., Rasoulizadeh, M.N., Jafari, H., Gasimov, Y.S.: Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 24(Suppl. 1), 49–58 (2020)

    Article  Google Scholar 

  19. Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst. 8(3), 225–233 (1982)

    Article  Google Scholar 

  20. Mazandarani, M., Najariyan, M.: Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2354–2372 (2014)

    Article  MathSciNet  Google Scholar 

  21. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 fuzzy logic: theory and applications. In: 2007 IEEE International Conference on Granular Computing (GRC 2007), p. 145. IEEE (2007)

  22. Chalco-Cano, Y., Lodwick, W.A., Bede, B.: In: Fuzzy differential equations and Zadeh’s extension principle. In: 2011 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–5. IEEE (2011)

  23. John, R.I.: Type-2 inferencing and community transport scheduling. In: Proc. 4th Euro. Congress Intelligent Techniques Soft Computing, pp. 1369–1372 (1996)

  24. Liang, Q., Mendel, J.M.: An introduction to type-2 TSK fuzzy logic systems. In: FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No. 99CH36315), vol. 3, pp. 1534–1539. IEEE (1999)

  25. Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Article  Google Scholar 

  26. Mitchell, H.B.: Ranking type-2 fuzzy numbers. IEEE Trans. Fuzzy Syst. 14(2), 287–294 (2006)

    Article  Google Scholar 

  27. Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inf. Control 31(4), 312–340 (1976)

    Article  MathSciNet  Google Scholar 

  28. Torshizi, A.D., Zarandi, M.H.F., Zakeri, H.: On type-reduction of type-2 fuzzy sets: a review. Appl. Soft Comput. 27, 614–627 (2015)

    Article  Google Scholar 

  29. Wang, W., Liu, X., Qin, Y.: Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl.-Based Syst. 30, 121–128 (2012)

    Article  Google Scholar 

  30. Yager, R.R.: Fuzzy subsets of type II in decisions. Cybernetics and System 10(1–3), 137–159 (1980)

    MathSciNet  Google Scholar 

  31. Zhai, D., Mendel, J.M.: Uncertainty measures for general type-2 fuzzy sets. Inf. Sci. 181(3), 503–518 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wagenknecht, M., Hartmann, K.: Application of fuzzy sets of type 2 to the solution of fuzzy equations systems. Fuzzy Sets Syst. 25(2), 183–190 (1988)

    Article  MathSciNet  Google Scholar 

  33. Picos, K.: Intuitionistic and type-2 fuzzy logic enhancements in neural and optimization algorithms: theory and applications (2020)

  34. Najafi, H.S., Sasemasi, F.R., Roudkoli, S.S., Nodehi, S.F.: Comparison of two methods for solving fuzzy differential equations based on Euler method and Zadehs extension. J. Math. Comput. Sci. 2(2), 295–306 (2011)

    Article  Google Scholar 

  35. Chalco-Cano, Y., Román-Flores, H.: Comparation between some approaches to solve fuzzy differential equations. Fuzzy Sets Syst. 160(11), 1517–1527 (2009)

    Article  Google Scholar 

  36. Mizukoshi, M.T., Barros, L.D., Chalco-Cano, Y., Román-Flores, H., Bassanezi, R.C.: Fuzzy differential equations and the extension principle. Inf. Sci. 177(17), 3627–3635 (2007)

    Article  MathSciNet  Google Scholar 

  37. Bandyopadhyay, A., Kar, S.: System of type-2 fuzzy differential equations and its applications. Neural Comput. Appl. 31(9), 5563–5593 (2019)

    Article  Google Scholar 

  38. Chalikias, M., Skordoulis, M.: Implementation of Richardson’s arms race model. Appl. Math. Sci. 8(81), 4013–4023 (2014)

  39. Chakraborty, A., Mondal, S.P., Ahmadian, A., Senu, N., Alam, S., Salahshour, S.: Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications. Symmetry 10(8), 327 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shariful Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudu, S., Mondal, S.P. & Alam, S. Different Solution Strategy for Solving Type-2 Fuzzy System of Differential Equations with Application in Arms Race Model. Int. J. Appl. Comput. Math 7, 177 (2021). https://doi.org/10.1007/s40819-021-01116-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01116-0

Keywords

Navigation