Skip to main content
Log in

A freezing problem with varying thermal coefficients and convective boundary condition

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study investigates a one-dimensional Stefan problem by taking variable specific heat and thermal conductivity which depends on temperature. Time dependent heat flux is also assumed at the boundary x = 0 in the problem. The similarity solution for the problem is constructed when \( \alpha = \beta \) and \( p = q = 1 \). The uniqueness and existence of the similarity solution to the problem have been also established. The problem is solved approximately for all \( \alpha \) and \( \beta \) with the aid of the shifted Chebyshev tau method. To check the precision of the proposed approximate solution, we have made its comparisons with the obtained exact solution. The comparisons done are shown by tables which sufficiently agree with the exact solution. The effects of the parameters on the movement of interface and temperature profiles are also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lunardini, V.J.: Heat Transfer with Freezing and Thawing. Elsevier, Amsterdam (1991)

    Google Scholar 

  2. Gupta, S.C.: The Classical Stefan Problem, Basic Concepts Modelling and Analysis. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  3. Evans, J.A.: Frozen Food Science and Technology. Wiley, London (2009)

    Google Scholar 

  4. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  5. Hill, J.: The Stefan problem in nonlinear heat conduction. J. Appl. Math. Phys. 37, 206–229 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Meek, P.C., Norbury, J.: Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal. 21, 883–893 (1984)

    Article  MathSciNet  Google Scholar 

  7. Das, S., Rajeev, : Solution of fractional diffusion equation with a moving boundary condition by variational iteration method and Adomian decomposition method. Z. Naturforsch 65, 793–799 (2010)

    Article  Google Scholar 

  8. Fazio, R.: Scaling invariance and the iterative transformation method for a class of parabolic moving boundary problems. Int. J. Non-Linear Mech. 50, 136–140 (2013)

    Article  Google Scholar 

  9. Rajeev: Homotopy perturbation method for a Stefan problem with variable latent heat. Ther. Sci. 18(2), 391–398 (2014)

    Article  Google Scholar 

  10. Turkyilmazoglu, M.: Heat transfer from warm water to a moving foot in a footbath. Appl. Therm. Eng. 98, 280–287 (2016)

    Article  Google Scholar 

  11. Cho, S.H., Sunderland, J.E.: Phase-change problems with temperature-dependent thermal conductivity. J Heat Transf 96(2), 214–217 (1974)

    Article  Google Scholar 

  12. Petrova, A., Tarzia, D.A., Turner, C.: The one-phase supercooled Stefan problem with temperature-dependent thermal conductivity and a convective term. Adv. Math. Sci. Appl. 4(1), 35–50 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Tritscher, P., Broadbridge, P.: A similarity solution of a multiphase Stefan problem incorporating general non-linear heat conduction. Int. J. Heat Mass Transf. 37(14), 2113–2121 (1994)

    Article  Google Scholar 

  14. Natale, M.F., Tarzia, D.A.: Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity. Boll. Unione Math. Ital. 8(9), 79–99 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Kumar, A., Singh, A.K., Rajeev: A Stefan problem with temperature and time dependent thermal conductivity. J. King Saud Uniiv. Sci. 32(1), 97–101 (2020)

    Article  Google Scholar 

  16. Oliver, D.L.R., Sunderland, J.E.: A phase-change problem with temperature-dependent thermal conductivity and specific heat. Int. J. Heat Mass Transf. 30, 2657–2661 (1987)

    Article  Google Scholar 

  17. Ramos, M., Cerrato, Y., Gutierrez, J.: An exact solution for the finite Stefan problem with temperature-dependent thermal conductivity and specific heat. Int. J. Ref. 17(2), 130–134 (1994)

    Article  Google Scholar 

  18. Briozzo, A.C., Natale, M.F., Tarzia, D.A.: Existence of an exact solution for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskiis method. Nonlinear Anal. 67, 1989–1998 (2007)

    Article  MathSciNet  Google Scholar 

  19. Briozzo, A.C., Natale, M.F.: A nonlinear supercooled Stefan problem. Z. Angew. Math. Phys. 68, 46 (2017)

    Article  MathSciNet  Google Scholar 

  20. Turkyilmazoglu, M.: Stefan problems for moving phase change materials and multiple solutions. Int. J. Therm. Sci. 126, 67–73 (2018)

    Article  Google Scholar 

  21. Kumar, A., Singh, A.K.: Rajeev: A moving boundary problem with variable specific heat and thermal conductivity. J. King Saud Univ. Sci. (2018). https://doi.org/10.1016/j.jksus.2018.05.028

    Article  Google Scholar 

  22. Natale, M.F., Tarzia, D.A.: Explicit solutions to the one-phase Stefan problem with temperature-dependent thermal conductivity and a convective term. Int. J. Eng. Sci. 41, 1685–1698 (2003)

    Article  MathSciNet  Google Scholar 

  23. Briozzo, A.C., Natale, M.F.: One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type. J. Appl. Anal. 21(2), 89–97 (2015)

    Article  MathSciNet  Google Scholar 

  24. Briozzo, A.C., Natale, M.F.: Nonlinear Stefan problem with convective boundary condition in Storms materials. Z. Angew. Math. Phys. 67, 19 (2016)

    Article  MathSciNet  Google Scholar 

  25. Singh, A.K., Kumar, A., Rajeev, : A Stefan problem with variable thermal coefficients and moving phase change material. J. King Saud Univ. Sci. (2018). https://doi.org/10.1016/j.jksus.2018.09.009.16

    Article  Google Scholar 

  26. Ceretani, A.N., Salva, N.N., Tarzia, D.A.: An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition. Nonlinear Anal. Real World Appl. 40, 243–259 (2018)

    Article  MathSciNet  Google Scholar 

  27. Bollati, J., Natale, M.F., Semitiel, J.A., Tarzia, D.A.: Existence and uniqueness of solution of two one-phase Stefan problems with variable thermal coefficient. Nonlinear Anal. Real World Appl. (2020). https://doi.org/10.1016/j.nonrwa.2019.103001

    Article  MathSciNet  MATH  Google Scholar 

  28. Jain, L., Kumar, A., Rajeev, : A numerical study of a moving boundary problem with mixed boundary condition and variable thermal coefficients. Comput. Therm. Sci. 12(3), 249–260 (2020)

    Article  MathSciNet  Google Scholar 

  29. Kumar, A., Rajeev, : A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition. Appl. Math. Comput. 45, 50 (2020). https://doi.org/10.1016/j.amc.2020.125490

    Article  MathSciNet  Google Scholar 

  30. Parand, K., Razzaghi, M.: Rational Chebyshev Tau method for solving higher-order ordinary differential equations. Int. J. Comput. Math. 81(1), 73–80 (2004)

    Article  MathSciNet  Google Scholar 

  31. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  Google Scholar 

  32. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35, 5662–5672 (2011)

    Article  MathSciNet  Google Scholar 

  33. Vanani, S.K., Aminataei, A.: Tau approximate solution of fractional partial differential equations. Comput. Math Appl. 62, 1075–1083 (2011)

    Article  MathSciNet  Google Scholar 

  34. Ghoreishi, F., Yazdani, S.: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math Appl. 61, 30–43 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, A.K. & Rajeev A freezing problem with varying thermal coefficients and convective boundary condition. Int. J. Appl. Comput. Math 6, 148 (2020). https://doi.org/10.1007/s40819-020-00894-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00894-3

Keywords

Navigation