Skip to main content
Log in

A New Algorithm of Residual Power Series (RPS) Technique

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Approximate analytic solutions of time–space fractional heat and wave equations are described. A new algorithm of Residual power series technique is introduced to obtain approximate solutions of such problems. The solution was obtained without reducing fractional differential equations to time fractional or space fractional differential equations. Some interesting results are presented to verify the efficiency and reliability of the developed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gafiychuk, V., Datsko, B.: Stability analysis and oscillatory structures in timefractionalreaction–diffusion systems. Phys. Rev. E 75, 055201 (2007)

    Article  Google Scholar 

  2. Gafiychukand, V., Datsko, B.: Pattern formation in a fractional reaction–diffusion system. Phys. A Stat. Mech. Appl. 365, 300–306 (2006)

    Article  Google Scholar 

  3. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Turing pattern formation in fractional activator–inhibitor systems. Phys. Rev. E 72, 026101 (2005)

    Article  MathSciNet  Google Scholar 

  4. Henry, B.I., Wearne, S.L.: Fractional reaction–diffusion. Phys. A 276, 448–455 (2000)

    Article  MathSciNet  Google Scholar 

  5. Henry, B.I., Wearne, S.L.: Existence of turing instabilities in a two-species fractional reaction–diffusion system. Siam J. Appl. Math. 62, 870–887 (2002)

    Article  MathSciNet  Google Scholar 

  6. Seki, K., Wojcik, M., Tachiya, M.: Fractional reaction–diffusion equation. J. Chem. Phys. 119, 2165 (2003)

    Article  Google Scholar 

  7. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Fractional reaction–diffusion equations. Astrophys. Space Sci. 305, 289–296 (2006)

    Article  Google Scholar 

  8. Varea, C., Barrio, R.A.: Travelling turing patterns with anomalous diffusion. J. Phys. Condens. Mater. 16, 5081–5090 (2004)

    Article  Google Scholar 

  9. Vlad, M.O., Ross, J.: Systematic derivation of reaction–diffusion equations with distributed delays and relations to fractional reaction–diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition. Phys. Rev. E 66(061908), 12 (2002)

    MathSciNet  Google Scholar 

  10. Weitzner, H., Zaslavsky, G.M.: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simulat. 8, 273–281 (2003)

    Article  MathSciNet  Google Scholar 

  11. Arafa, A.A.M., Hagag, A.M.S.: Q -homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory. Asian Eur. J. Math. 12(3), 1950045 (2019)

    Article  MathSciNet  Google Scholar 

  12. Rida, S., Arafa, A., Abedl-Rady, A., Abdl-Rahaim, H.: Fractional physical differential equations via natural transform. Chin. J. Phys. 55(4), 1569–1575 (2017)

    Article  Google Scholar 

  13. Arafa, A.A.M., Rida, S.Z., Mohammadein, A.A., Ali, H.M.: Solving nonlinear fractional differential equation by generalized Mittag-Leffler function method. Commun. Theor. Phys. 59, 661–663 (2013)

    Article  MathSciNet  Google Scholar 

  14. Arafa, A.A.M., Rida, S.Z., Mohamed, H.: Approximate analytical solutions of Schnakenberg systems by homotopy analysis method. Appl. Math. Mod. 36, 4789–4796 (2012)

    Article  MathSciNet  Google Scholar 

  15. Arafa, A.A.M., Rida, S.Z., Khalil, M.: A fractional-order model of HIV infection: numerical solution and comparisons with data of patients. Int. J. of Biomath. 7, 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  16. Tchier, F., Inc, M., Yusuf, A.: Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems. Eur. Phys. J. Plus 134, 250 (2019)

    Article  Google Scholar 

  17. Inc, M., Abdel-Gawad, H.I., Tantawy, M., Yusuf, A.: On multiple soliton similariton pair solutions, conservation laws via multiplier and stability analysis for the Whitham–Broer–Kaup equations in weakly dispersive media. Math Meth Appl Sci. 42(7), 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  18. Abdel-Gawad, H.I., Tantawy, M., Inc, M., Yusuf, A.: On multi-fusion solitons induced by inelastic collision for quasi-periodic propagation with nonlinear refractive index and stability analysis. Mod. Phys. Lett. B 32, 1850353 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ghanbari, B., Yusuf, A., Inc, M., Baleanu, D.: The new exact solitary wave solutions and stability analysis for the (2 + 1)-dimensional Zakharov-Kuznetsov equation. Adv. Differ. Equ. 2019, 49 (2019)

    Article  MathSciNet  Google Scholar 

  20. Baleanu, D., Shiri, B.: Collocation methods for fractional differential equations involving non-singular kernel. Chaos Solit. Fract. 116, 136–145 (2018)

    Article  MathSciNet  Google Scholar 

  21. Hajipour, M., Jajarmib, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146–158 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Acan, O., Baleanu, D.: Analytical approximate solutions of (n + 1)-dimensional fractal heat-like and wave-like equations. Entropy 19, 296 (2017)

    Article  Google Scholar 

  23. Jafarian, A., Baleanu, D.: Application of ANNs approach for wave-like and heat-like equations. Open Phys. 15, 1086–1094 (2019)

    Article  Google Scholar 

  24. Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation. Adv. Differ. Equ. 2018, 319 (2018)

    Article  MathSciNet  Google Scholar 

  25. A. Arafa, G. Elmahdy, Application of residual power series method to fractional coupled physical equations arising in fluids flow. Int. J. Differ. Equ. 2018, p. 7692849

  26. Alquran, M.: Analytical solutions of fractional foam drainage equation by residual power series method. Math. Sci. 8, 153–160 (2014)

    Article  MathSciNet  Google Scholar 

  27. Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Analytical solutions of fractional population diffusion model: residual power series. Nonlinear Stud. 22, 31–39 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Alquran, M.: Analytical solution of time-fractional two component evaluationarysystem of order 2 by residual power series method. J. Appl. Anal. Comput. 5, 589–599 (2015)

    MathSciNet  Google Scholar 

  29. El-Ajou, A., Abu Arqub, A., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  MathSciNet  Google Scholar 

  30. Jaradat, H.M., Al-Shara, S., Khan, Q.J.A., Alquran, M., Al-Khaled, K.: Analytical solution of time fractional Drinfeld-Sokolov-Wilson system using residual power series method. Int. J. Appl. Math. 46, 64–70 (2016)

    MathSciNet  Google Scholar 

  31. F. Xu, Y. Gao, X. Yang, and H. Zhang, Construction of fractional power series solutions to fractional boussinesq equations using residual power series method. Math. Probl. Eng. 2016, Article ID 5492535, p. 15

  32. El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Bayrak, M.A., Demir, A.: A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 336, 215–230 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  36. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MathSciNet  Google Scholar 

  37. Odibat, Z.: Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178, 527–533 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Momani, S., Odibat, Z.: Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355, 271–279 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas A. M. Arafa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arafa, A.A.M. A New Algorithm of Residual Power Series (RPS) Technique. Int. J. Appl. Comput. Math 6, 62 (2020). https://doi.org/10.1007/s40819-020-00812-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00812-7

Keywords

Navigation