Skip to main content
Log in

Surface Wave Analysis in Orthotropic Composite Structure with Irregular Interfaces

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper intends to study the dispersion and attenuation characteristics of corrugation, reinforcement, heterogeneity and initial stress on propagation of Love type surface waves in a bedded structure with welded contact, subject to certain boundary conditions. Current composite model is consists of an initially stressed heterogeneous orthotropic layer bonded between fiber-reinforced upper half-space (under hydrostatic stress) and pre-stressed lower porous half-space separated by corrugated boundaries. Exponential variation in elastic parameters of the orthotropic medium is considered in the sandwiched layer. Dispersion equation has been obtained in closed form. Considerable effect of elastic parameters (reinforcement, heterogeneity and initial stress) on the phase velocity of Love type wave has been discussed graphically. Some particular cases have been discussed and it is found that dispersion equation is in well-agreement with the classical Love wave equation. The deduced equations coincide with the classical Love-wave condition for the uniform homogeneous isotropic structure. Numerical computations are carried out for involved parameters and demonstrated with the help of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Selim, M.M.: Static deformation of an irregular initially stressed medium. Appl. Math. Comput. 188, 1274–1284 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Zhang, R., Shinozuka, M.: Effects of irregular boundaries in a layered half-space on seismic waves. J. Sound Vib. 195, 1–16 (1996)

    Article  Google Scholar 

  3. Chen, X.F.: Generation and propagation of seismic SH waves in multi-layered media with irregular interfaces. Adv. Geophys. 48, 191–264 (2007)

    Article  Google Scholar 

  4. Rayleigh, L.: On the reflection of sound or light from a corrugated surface. Rep. Br. Assoc. Adv. Sci. PP, 690–691 (1893)

    Google Scholar 

  5. Asano, S.: Reflection and refraction of elastic waves at a corrugated boundary surface: Part I: the case of incidence of SH-wave. Bull. Earthq. Res. Inst. 38(2), 177–197 (1960)

    Google Scholar 

  6. Tomar, S.K., Saini, S.L.: Reflection and refraction of SH-waves at a corrugated interface between two-dimensional transversely isotropic half spaces. J. Phys. Earth 45, 347–362 (1997)

    Article  Google Scholar 

  7. Tomar, S.K., Kumar, R., Chopra, A.: Reflection and refraction of SH-waves at a corrugated interface between transversely isotropic and visco-elastic solid half spaces. Acta Geophys. Polon. 50, 231–249 (2000)

    Google Scholar 

  8. Biot, M.A.: Theory of elastic waves in a fluid-saturated porous solid I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  9. Biot, M.A.: Generalized theory of acoustic propagation in porous media. J. Acoust. Soc. Am. 34, 1254–1264 (1962)

    Article  MathSciNet  Google Scholar 

  10. Deresiewicz, H.: The effect of boundaries on wave propagation in a liquidfilled porous solid. The Love waves in a double surface layer. Bull. Seismol. Soc. Am. 54, 417–423 (1964)

    Google Scholar 

  11. Wang, Y.S., Zhang, Z.M.: Propagation of the Love waves in a transversely isotropic fluid-saturated porous layered half-space. J. Acoust. Soc. Am. 103, 695–701 (1998)

    Article  Google Scholar 

  12. Dai, Z.-J., Kuang, Z.-B., Zhao, S.-X.: Rayleigh waves in a double porosity half-space. J. Sound Vib. 298, 319–332 (2006)

    Article  Google Scholar 

  13. Kuang, Z.-J., Dai, Z.-B.: Love waves in double porosity media. J. Sound Vib. 296, 1000–1012 (2006)

    Article  Google Scholar 

  14. Ke, L.-L., Wang, Y.-S., Zhang, Z.-M.: Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dyn. Earthq. Eng. 26, 574–581 (2006)

    Article  Google Scholar 

  15. Son, M.S., Kang, Y.J.: Propagation of shear waves in a poroelastic layer constrained between two elastic layers. Appl. Math. Model. 36, 3685–3695 (2012)

    Article  MathSciNet  Google Scholar 

  16. Singh, A.K., Das, A., Chattopadhyay, A., Dhua, S.: Dispersion of shear wave propagating in vertically heterogeneous double layers overlying an initially stressed isotropic half-space. Soil Dyn. Earthq. Eng. 69, 16–27 (2015)

    Article  Google Scholar 

  17. Singh, A.K., Parveen, Z., Das, A., Chattopadhyay, A.: Influence of loosely bonded sandwiched initially stressed visco-elastic layer on torsional wave propagation. J. Mech. 33(3), 351–368 (2017)

    Article  Google Scholar 

  18. Singh, A.K., Lakshman, A.: Effect of loosely bonded undulated boundary surfaces of doubly layered half-space on the propagation of torsional wave. Mech. Res. Commun. 73, 91–206 (2016)

    Article  Google Scholar 

  19. Sahu, S.A., Singh, M.K., Pankaj, K.K.: Analysis of torsional waves in a pre-stressed composite structure with loosely bonded and corrugated boundaries. Mech. Compos. Mater. 54(3), 473–488 (2018)

    Article  Google Scholar 

  20. Singh, M.K., Sahu, S.A.: Torsional wave propagation in a pre-stressed structure with corrugated and loosely bonded surfaces. J. Theor. Appl. Mech. 47(4), 48–74 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kumar, R., Kumar, R.: Analysis of wave motion at the boundary surface of orthotropic thermoelastic material with voids and isotropic elastic half-space. J. Eng. Phys. Thermophys. 84(2), 463–478 (2011)

    Article  Google Scholar 

  22. Akbarov, S., Ilhan, N.: Dynamics of a system comprising a pre-stressed orthotropic layer and pre-stressed orthotropic half-plane under the action of a moving load. Int. J. Solids Struct. 45, 4222–4235 (2008)

    Article  Google Scholar 

  23. Chattopadhyay, A., Gupta, S., Sahu, S.A., Singh, A.K.: Dispersion of horizontally polarized shear waves in an irregular non- homogeneous self-reinforced crustal layer over a semi-infinite self-reinforced medium. J. Vib. Control 19(1), 109–119 (2013)

    Article  MathSciNet  Google Scholar 

  24. Kakar, R.: Dispersion of Love wave in an isotropic layer sandwiched between orthotropic and pre-stressed inhomogeneous half-space. Lat. Am. J. Solids Struct. 12(10), 1679–7825 (2015)

    Article  Google Scholar 

  25. Destrade, M.: Surface waves in orthotropic incompressible materials. J. Acoust. Soc. Am. 110(2), 837–840 (2001)

    Article  Google Scholar 

  26. Kundu, S., Alam, P., Gupta, S.: Shear waves in magneto-elastic transversely isotropic (MTI) layer bonded between two heterogeneous elastic media. Mech. Adv. Mater. Struct. 26(5), 407–415 (2019)

    Article  Google Scholar 

  27. Alam, P., Kundu, S., Gupta, S., Saha, A.: Study of torsional wave in a poroelastic medium sandwiched between a layer and a half-space of heterogeneous dry sandy media. Waves Random Complex Media 28(1), 182–201 (2018)

    Article  MathSciNet  Google Scholar 

  28. Alam, P., Kundu, S., Gupta, S.: Dispersion and Attenuation of Love-type waves due to a Point source in magneto-viscoelastic layer. J. Mech. 34(6), 801–816 (2018)

    Article  Google Scholar 

  29. Alam, P., Kundu, S.: Influences of heterogeneities and initial stresses on the propagation of love-type waves in a transversely isotropic layer over an inhomogeneous half-space. J. Solid Mech. 9(4), 783–793 (2017)

    Google Scholar 

  30. Othman, M.I.A., Marin, M.: Effect of thermal loading due to laser pulse on thermoelastic porous medium under G–N theory. Results Phys. 7, 3863–3872 (2017)

    Article  Google Scholar 

  31. Hassan, M., Marin, M., Ellahi, R., Alamri, S.Z: Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/Water hybrid-nanofluids. Heat Transf. Res. 49, 1837–1848 (2018)

    Article  Google Scholar 

  32. Belfield, A.J., Rogers, A.J., Rogers, T.G., Spencer, A.J.M.: Stress in elastic plates reinforced by fibres lying in concentric circles. J. Mech. Phys. Solids 31(1), 25–54 (1983)

    Article  Google Scholar 

  33. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)

    Book  Google Scholar 

  34. Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhiuser Boston, New York (2012)

    MATH  Google Scholar 

  35. Markham, M.F.: Measurements of the elastic constants of fibre composites by ultrasonics. Composites, 1, 145–149 (1970)

    Article  Google Scholar 

  36. Prosser, W.H., Green, R.E.: Characterization of the nonlinear elastic properties of graphite/epoxy composites using ultrasound. J. Reinf. Plast. Compos. 9(2), 162–173 (1990)

    Article  Google Scholar 

  37. Chattaraj, R., Samal, S.K.: Love waves in the fiber-reinforced layer over a gravitating porous half-space. Acta Geophys. 61(5), 1170–1183 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Alam, P. Surface Wave Analysis in Orthotropic Composite Structure with Irregular Interfaces. Int. J. Appl. Comput. Math 6, 13 (2020). https://doi.org/10.1007/s40819-019-0745-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0745-5

Keywords

Navigation