Skip to main content
Log in

Periodic Oscillation and Bifurcation Analysis of Pendulum with Spinning Support Using a Modified Continuous Piecewise Linearization Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The large-amplitude oscillation of a pendulum with spinning support was investigated using a modified continuous piecewise linearization method (CPLM). In contrast to previous studies, the present study investigated the response of the spinning support pendulum when the non-dimensional rotation parameter (\( {\Lambda} \)) is greater than one. The analysis showed that the natural frequency increased monotonically with Λ, while the oscillation history produced a distinct qualitative change as \( {\Lambda} \) increases from \( {\Lambda} < 1 \) to \( {\Lambda} > 1 \), confirming the presence of a bifurcation at \( {\Lambda} = 1 \). It was also observed that the response exhibits a bi-stable equilibrium and a double-well potential when \( {\Lambda} > 1 \). Finally, the modified CPLM solution was shown to produce a maximum error of less than 0.30% for \( {\text{A}} \le 179^\circ \) and \( {\Lambda} \le 1 \), which is better than other published results. This shows the potential of the modified CPLM to obtain accurate periodic solutions of complex nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\( \varphi \,\left( {\text{rad}} \right) \) :

Angular displacement of pendulum

\( \varphi_{r} \,\left( {\text{rad}} \right) \) :

Displacement at the beginning of a discretization

\( \varphi_{s} \,\left( {\text{rad}} \right) \) :

Displacement at the end of a discretization

\( \dot{\varphi }_{r} \,\left( {\text{rad/s}} \right) \) :

Velocity at the beginning of a discretization

\( \dot{\varphi }_{s} \,\left( {\text{rad/s}} \right) \) :

Velocity at the end of a discretization

\( \omega_{rs} \,\left( {\text{rad/s}} \right) \) :

CPLM constant representing circular frequency of CPLM solution

\( {\varphi}_{rs} \,\left( {\text{rad}} \right) \) :

CPLM constant representing phase angle of CPLM solution when \( K_{rs} > 0 \)

Δt(s):

Time interval covered by a discretization

\( {\Lambda}\left( - \right) \) :

Non-dimensional rotation parameter or dimensionless rotational speed

\( A\,\left( {\text{rad}} \right) \) :

Amplitude of the pendulum

\( A_{rs} \,\left( {\text{rad}} \right);\;B_{rs} \,\left( {\text{rad}} \right) \) :

Integration constants for CPLM solution when Krs < 0

\( C_{rs} \,\left( {\text{rad}} \right) \) :

CPLM constant representing steady-state response of CPLM solution

\( F_{rs} \,\left( {{\text{N}}/{\text{kg}}} \right) \) :

Linearized restoring force for the discretization bounded by points r and s

\( G_{rs} \,\left( {\text{rad/s}} \right);H_{rs} \,\left( {\text{rad}} \right) \) :

Integration constants for CPLM solution when Krs = 0

\( K_{rs} \,\left( {{\text{N}}/{\text{kg}}\,{\text{rad}}} \right) \) :

Linearized stiffness for the discretization bounded by points r and s

\( R_{rs} \,\left( {\text{rad}} \right) \) :

CPLM constant representing amplitude of CPLM solution when Krs > 0

References

  1. Lai, S.K., Lim, C.W., Lin, Z., Zhang, W.: Analytical analysis for large-amplitude oscillation of a rotational pendulum system. Appl. Math. Comput. 217, 6115–6124 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Abdel-Rahman, A.M.M.: The simple pendulum in a rotating frame. Am. J. Phys. 51(8), 721–724 (1983)

    Article  Google Scholar 

  3. Butikov, E.I.: The rigid pendulum—an antique but evergreen physical model. Eur. J. Phys. 20, 429–441 (1999)

    Article  Google Scholar 

  4. Butikov, E.I.: Oscillations of a simple pendulum with extremely large amplitudes. Eur. J. Phys. 33, 1555–1563 (2012)

    Article  Google Scholar 

  5. Belendez, A., Hernandez, A., Marquez, A., Belendez, T., Neipp, C.: Analytical approximations for the period of a nonlinear pendulum. Eur. J. Phys. 27, 539–551 (2006)

    Article  Google Scholar 

  6. Belendez, A., Rodes, J.J., Belendez, T., Hernandez, A.: Approximation for a large-angle simple pendulum period. Eur. J. Phys. 30, L25–L28 (2009)

    Article  Google Scholar 

  7. Lima, F.M.S.: Simple ‘log formulae’ for pendulum motion valid for any amplitude. Eur. J. Phys. 29, 1091–1098 (2008)

    Article  Google Scholar 

  8. Liao, S.J., Chwang, A.T.: Application of homotopy analysis method in nonlinear oscillations. Trans. ASME J. Appl. Mech. 65(4), 914–922 (1998)

    Article  MathSciNet  Google Scholar 

  9. Khan, N.A., Khan, N.A., Raiz, F.: Dynamic analysis of rotating pendulum by Hamiltonian approach. Chin. J. Math. 4 p. Article ID 237370 (2013)

  10. Kachapi, S.H.H., Ganji, D.D.: Dynamics and Vibrations: Progress in Nonlinear Analysis. Springer, New York (2014)

    Book  Google Scholar 

  11. Esmailzadeh, E., Younesian, D., Askari, H.: Analytical Methods in Nonlinear Oscillations: Approaches and Applications. Springer, Netherlands (2019)

    Book  Google Scholar 

  12. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  13. Cheung, Y.K., Chen, S.H., Lau, S.L.: A modified Lindstedt–Poincare method for certain strongly non-linear oscillators. Int. J. Non-Linear Mech. 26(3/4), 367–378 (1991)

    Article  Google Scholar 

  14. González-Gaxiola, O., Santiago, J.A., Ruiz de Chávez, J.: Solution for the nonlinear relativistic harmonic oscillator via Laplace–Adomian decomposition method. Int. J. Appl. Comput. Math. 3(3), 2627–2638 (2017)

    Article  MathSciNet  Google Scholar 

  15. Mohammadian, M.: Application of the global residue harmonic balance method for obtaining higher-order approximate solutions of a conservative system. Int. J. Appl. Comput. Math. 3(3), 2519–2532 (2017)

    Article  MathSciNet  Google Scholar 

  16. He, J.H.: Amplitude–frequency relationship for conservative nonlinear oscillators with odd nonlinearities. Int. J. Appl. Comput. Math. 3(2), 1557–1560 (2017)

    Article  MathSciNet  Google Scholar 

  17. Yazdi, M.K., Tehrani, P.H.: Rational variational approaches to strong nonlinear oscillations. Int. J. Appl. Comput. Math. 3(2), 757–771 (2017)

    Article  MathSciNet  Google Scholar 

  18. Big-Alabo, A.: A simple cubication method for approximate solution of nonlinear Hamiltonian oscillators. Int. J. Mech. Eng. Educ. (2019). https://doi.org/10.1177/0306419018822489

    Article  Google Scholar 

  19. Big-Alabo, A.: Periodic solutions of Duffing-type oscillators using continuous piecewise linearization method. Mech. Eng. Res. 8(1), 41–52 (2018)

    Article  Google Scholar 

  20. Big-Alabo, A.: Approximate periodic solution for the large-amplitude oscillations of a simple pendulum. Int. J. Mech. Eng. Educ. (2019). https://doi.org/10.1177/0306419019842298

    Article  Google Scholar 

  21. Meresht, N.B., Ganji, D.D.: Solving nonlinear differential equation arising in dynamical systems by AGM. Int. J. Appl. Comput. Math. 3(2), 1507–1523 (2017)

    Article  MathSciNet  Google Scholar 

  22. Big-Alabo, A., Harrison, P., Cartmell, M.P.: Algorithm for the solution of elastoplastic half-space impact: force-indentation linearisation method. Proc. IMechE Part C J. Mech. Eng. Sci. 229(5), 850–858 (2015)

    Article  Google Scholar 

  23. Big-Alabo, A., Cartmell, M.P., Harrison, P.: On the solution of asymptotic impact problems with significant localised indentation. Proc. IMechE Part C J. Mech. Eng. Sci. 231(5), 807–822 (2017)

    Article  Google Scholar 

  24. Big-Alabo, A.: Equivalent impact system approach for elastoplastic impact analysis of two dissimilar spheres. Int. J. Impact Eng. 113, 168–179 (2018)

    Article  Google Scholar 

  25. Big-Alabo, A.: Continuous piecewise linearization method for approximate periodic solution of the relativistic oscillator. Int. J. Mech. Eng. Educ. (2018). https://doi.org/10.1177/0306419018812861

    Article  Google Scholar 

  26. Big-Alabo, A., Ossia, C.V.: Analysis of the coupled nonlinear vibration of a two-mass system. J. Appl. Comput. Mech. (2019). https://doi.org/10.22055/jacm.2019.28296.1474

    Article  Google Scholar 

  27. Kovacic, I., Cveticanin, L., Zukovic, M., Rakaric, Z.: Jacobi elliptic functions: a review of nonlinear oscillatory application problems. J. Sound Vib. 380, 1–36 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. E.C. Ebieto of the Department of Mechanical Engineering, University of Port Harcourt, for proof-reading the draft manuscript and making useful suggestions. The reviewers of the manuscript are also acknowledged for their comments which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akuro Big-Alabo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Pseudocode Algorithm for Modified CPLM Solution for Pendulum with Spinning Support

figure a

The pseudocode algorithm above is for the negative velocity oscillation stage (i.e. \( \dot{\varphi } < 0 \)) when the pendulum swings from \( + \,A \) to \( - \,A \). This stage constitutes the first half-cycle of the oscillation. For the remaining half-cycle when the pendulum swings from \( - \,A \) back to \( + \,A \) a similar algorithm is applicable and the necessary changes can be made by referring to “Modified Continuous Piecewise Linearization Method” section.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Big-Alabo, A., Ossia, C.V. Periodic Oscillation and Bifurcation Analysis of Pendulum with Spinning Support Using a Modified Continuous Piecewise Linearization Method. Int. J. Appl. Comput. Math 5, 114 (2019). https://doi.org/10.1007/s40819-019-0697-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0697-9

Keywords

Navigation