Skip to main content
Log in

An Efficient Approach of Homotopic Asymptotic for System Differential Equations of Non Integer Order

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The momentous objective of this paper is to using a method with a free parameter which named optimum asymptotic homotopic method for finding solution of system differential equations featuring fractional derivative. To better understand the methodology and view its advantages compared to similar examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Magin, R.L., Abdullah, O., Baleanu, D., Zhou, X.J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J. Magn. Reson. 190(2), 255–270 (2008)

    Article  Google Scholar 

  2. Scalas, E.: The application of continuous-time random walks in finance and economics. Physica A 362(2), 225–239 (2006)

    Article  Google Scholar 

  3. Deshpande, A.S., Daftardar-Gejji, V., Sukale, Y.V.: On Hopf bifurcation in fractional dynamical systems. Chaos Solitons Fractals 98, 189–198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Neamaty, A., Nategh, M., Agheli, B.: Local non-integer order dynamic problems on time scales revisited. Int. J. Dyn. Control 1–13 (2017)

  5. Raja, M.A.Z., Samar, R., Alaidarous, E.S., Shivanian, E.: Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Appl. Math. Model. 40(11), 5964–5977 (2016)

    Article  MathSciNet  Google Scholar 

  6. Guner, O., Bekir, A.: The Exp-function method for solving nonlinear space–time fractional differential equations in mathematical physics. J. Assoc. Arab Univ. Basic. Appl. Sci. 24, 277–282 (2017)

    Google Scholar 

  7. Sohail, A., Arshad, S., Ehsan, Z.: Numerical analysis of plasma KdV equation: time-fractional approach. Int. J. Appl. Comput. Math. 3, 1325 (2017)

    Article  MathSciNet  Google Scholar 

  8. Neamaty, A., Nategh, M., Agheli, B.: Time-space fractional Burger’s equation on time scales. J. Comput. Nonlinear Dyn. 12(3), 031022 (2017)

    Article  Google Scholar 

  9. Ming, C., Liu, F., Zheng, L., Turner, I., Anh, V.: Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. Comput. Math. Appl. 72(9), 2084–2097 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khandelwal, K., Mathur, V.: Exact solutions for an unsteady flow of viscoelastic fluid in cylindrical domains using the fractional Maxwell model. Int. J. Appl. Comput. Math. 1(1), 143–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Machado, J.T., Baleanu, D., Luo, A.C.J. (eds.): Discontinuity and Complexity in Nonlinear Physical Systems. Springer, Cham (2014)

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier B.V, Netherlands (2006)

    MATH  Google Scholar 

  13. Baker, G.: Differential Equations as Models in Science and Engineering. World Scientific Publishing Co Inc., Singapore (2016)

    Book  MATH  Google Scholar 

  14. Salsa, S.: Partial Differential Equations in Action: From Modelling to Theory, vol. 99. Springer, Berlin (2016)

    MATH  Google Scholar 

  15. Agheli, B., Darzi, R.: Analysis of solution for system of nonlinear fractional Burger differential equations based on multiple fractional power series. Alex. Eng. J. 56(2), 271–276 (2017)

    Article  Google Scholar 

  16. Duan, J., An, J., Xu, M.: Solution of system of fractional differential equations by Adomian decomposition method. Appl. Math. A J. Chin. Univ. 22(1), 7–12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Patel, T., Meher, R.: Adomian decomposition Sumudu transform method for convective fin with temperature-dependent internal heat generation and thermal conductivity of fractional order energy balance equation. Int. J. Appl. Comput. Math. 3(3), 1879–1895 (2017)

    Article  MathSciNet  Google Scholar 

  19. Abdulaziz, O., Hashim, I., Momani, S.: Solving systems of fractional differential equations by homotopic-perturbation method. Phys. Lett. A 372(4), 451–459 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zurigat, M., Momani, S., Alawneh, A.: Analytical approximate solutions of systems of fractional algebraic–differential equations by homotopic analysis method. Comput. Math. Appl. 59, 1227–1235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kumar, P., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Sign. Proc. 86, 2602–2610 (2006)

    Article  MATH  Google Scholar 

  22. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marinca, V., Herişanu, N., Nemeş, I.: Optimal homotopy asymptotic method with application to thin film flow. Open Phys. 6(3), 648–653 (2008)

    Article  Google Scholar 

  24. Marinca, V., Herişanu, N., Bota, C., Marinca, B.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate. Appl. Math. Lett. 22(2), 245–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marinca, V., Herişanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35(6), 710–715 (2008)

    Article  Google Scholar 

  26. Ali, L., Islam, S., Gul, T., Khan, I., Dennis, L.C.C.: New version of optimal homotopy asymptotic method for the solution of nonlinear boundary value problems in finite and infinite intervals. Alex. Eng. J. 55(3), 2811–2819 (2016)

    Article  Google Scholar 

  27. Herisanu, N., Marinca, V.: Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45(6), 847–855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Darzi.

Appendix: Illustration of Test Example 1 with Details

Appendix: Illustration of Test Example 1 with Details

Consider test example 1:

$$\begin{aligned} \left\{ \begin{array}{l } D^{\mu }_{t}u-v\,u_{xx}-u\,v_{xx}=f,\\ D^{\mu }_{t}v-v\,v_{xx} +u\,u_{xx}=g,\\ \end{array} \right. \end{aligned}$$
(29)

With considering

$$\begin{aligned} u(x,t,p)=u_{0}+ \sum _{i=1}^{\infty }u_{i}p^{i},\quad v(x,t,p)=v_{0}+ \sum _{i=1}^{\infty }v_{i}p^{i}, \end{aligned}$$
(30)

and

$$\begin{aligned} H(p)=p\, c_1+ p^2 c_2+ \cdots , \quad H'(p)=p\, d_1+ p^2 d_2+ \cdots , \end{aligned}$$
(31)

and using of O.HAM, for the first equation of (29) we can gain:

$$\begin{aligned}&\left( D^{\mu }u_{0}+\right. p D^\mu u_1+ \left. p^2 D^\mu u_2+ \cdots -h(x,t)\right) \\&\quad -\left( p D^{\mu }u_{0}+p^2 D^\mu u_1+p^3 D^\mu u_2 +\cdots -p\,h(x,t)\right) \\&\quad -\left( p\, c_1+ p^2 c_2+ \cdots \right) \bigg ( \left( D^{\mu }u_{0}+ p D^\mu u_1+p^2 D^\mu u_2+\cdots \right) \\&\quad -\left( v_{0}+p\,v_1+p^2v_2+\cdots \right) \left( u_{0}+p\,u_1+p^2u_2+\cdots \right) _{xx} \\&\quad -\left( u_{0}+p\,u_1+p^2u_2+\cdots \right) \left( v_{0}+p\,v_1+p^2v_2+\cdots \right) _{xx}-f(x,t)\bigg )=0. \end{aligned}$$

Equating the coefficients of different power in “p”, we have the following system of partial differential equations

$$\begin{aligned} p^{0}&: D^{\mu } u_{0}=f(x,t), \\ p^{1}&: D^{\mu } u_{1}=-c_1\left( u_{0}(v_{0})_{xx}+v_{0}(u_{0})_{xx} \right) ,&\\ p^{2}&: D^{\mu } u_{2}=(1+c_1)D^\mu u_1-c_2\left( u_{0}(v_{0})_{xx}+v_{0}(u_{0})_{xx} \right)&\\&\qquad \quad \qquad -c_1\left( v_{0}(u_{1})_{xx}+v_{0}(u_{1})_{xx}+u_{0}(v_{1})_{xx}+u_{1}(v_{0})_{xx}\right) ,&\\&\cdots&\\ p^{n}&: D^{\mu } u_{n}=(1+c_1)D^\mu u_{n-1}&\\&\qquad \quad \qquad -\left( \sum _{m=1}^{n}c_m \sum _{i=0}^{n-m}\left( u_i\right) _{xx} v_{n-m-i}+u_i \left( v_{n-m-i}\right) _{xx}\right) +\sum _{i=2}^{n-1}c_i D^{\mu } u_{n-i}. \end{aligned}$$

Using of O.HAM, for the second equation of (29) we can gain:

$$\begin{aligned}&\left( D^{\mu }v_{0}+\right. p D^\mu v_1+ \left. p^2 D^\mu v_2+ \cdots -h(x,t)\right) \\&\quad -\left( p D^{\mu }v_{0}+p^2 D^\mu v_1 +p^3 D^\mu v_2+\cdots -p\,h(x,t)\right) \\&\quad -\left( p\, d_1+ p^2 d_2+ \cdots \right) \bigg ( \left( D^{\mu }v_{0}+ p D^\mu v_1+p^2 D^\mu v_2+\cdots \right) \\&\quad -\left( v_{0}+p\,v_1+p^2v_2+\cdots \right) \left( v_{0}+p\,v_1+p^2v_2+\cdots \right) _{xx} \\&\quad +\left( u_{0}+p\,u_1+p^2u_2+\cdots \right) \left( u_{0}+p\,u_1+p^2u_2+\cdots \right) _{xx}-h(x,t)\bigg )=0. \end{aligned}$$

Equating the coefficients of different power in “p”, we have the following system of partial differential equations

$$\begin{aligned} p^{0}&: D^{\mu } v_{0}=h(x,t), \\ p^{1}&: D^{\mu } v_{1}=-d_1\left( v_{0}(v_{0})_{xx}-u_{0}(u_{0})_{xx} \right) ,&\\ p^{2}&: D^{\mu } v_{2}=(1+d_1)D^\mu v_1-d_2\left( v_{0}(v_{0})_{xx}-u_{0}(u_{0})_{xx} \right) ,&\\&\qquad \quad \qquad -d_1\left( v_{0}(v_{1})_{xx}+v_{1}(u_{0})_{xx}\right) +d_1\left( u_{0}(u_{1})_{xx}+u_{1}(u_{0})_{xx}\right) ,&\\&\cdots&\\ p^{n}&: D^{\mu } v_{n}=(1+d_1)D^\mu v_{n-1}&\\&\qquad \qquad \quad +\left( \sum _{m=1}^{n}d_m \sum _{i=0}^{n-m}u_i \left( u_{n-m-i}\right) _{xx}-v_i \left( v_{n-m-i}\right) _{xx}\right) + \sum _{i=2}^{n-1}d_i D^{\mu } u_{n-i}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darzi, R., Agheli, B. An Efficient Approach of Homotopic Asymptotic for System Differential Equations of Non Integer Order. Int. J. Appl. Comput. Math 4, 20 (2018). https://doi.org/10.1007/s40819-017-0463-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0463-9

Keywords

Mathematics Subject Classification

Navigation