Skip to main content
Log in

The Duffing Oscillator with Damping for a Softening Potential

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The solution to the softening Duffing differential equation \({\ddot{x}}+2\beta {\dot{x}}+\alpha x-\varepsilon x^{3}=0\), for an unforced system with damping is described in terms of the Jacobi elliptic functions. The parameter of the Jacobi elliptic functions is allowed to be time-dependent and the analytical solution is found to be accurate compared to the numerical one. An explicit expression for the the period of oscillation is derived and found to be longer initially, however gradually decreasing to that of a linearized model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guckenheimer, J., Homes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcation of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  2. Lawden, D.F.: Elliptic Functions and Applications. Applied Mathematical Sciences, vol. 60. Springer, New York (1989)

    Book  MATH  Google Scholar 

  3. Kovacic, I., Brennan, M.J.: The Duffing Equation Nonlinear Oscillations and their Behavior. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  4. Bakhtiari-Nejad, F., Nazari, M.: Nonlinear vibration analysis of isotropic cantilever plate with viscoelastic laminate. Nonlinear Dyn. 56, 325–356 (2009)

    Article  MATH  Google Scholar 

  5. Nayfeh, A.H.: Problems in Perturbations. Wiley, New York (1985)

    Google Scholar 

  6. Krylov, N., Bogoliubov, N.: Introduction to Nonlinear Mechanics. Annals of Mathematics Studies. Princeton University Press, Princeton (1947)

    Google Scholar 

  7. Christopher, P.A.T.: An approximate solution to a strongly nonlinear, second order, differential equation. Int. J. Control 17, 597–608 (1973)

    Article  MATH  Google Scholar 

  8. Amore, P., Raya, A., Fernández, F.M.: Alternative perturbation approaches in classical mechanics. Eur. J. Phys. 26, 1057–1063 (2005)

    Article  MATH  Google Scholar 

  9. Amore, P., Aranda, A.: Improved Lindstedt–Poincaré method for the solution of nonlinear problems. J. Sound Vib. 283, 1115–1136 (2007)

    Article  MATH  Google Scholar 

  10. Yuste, S.B., Bejarano, J.D.: Extension and improvement to the Krylov–Bogoliubov method using elliptic functions. Int. J. Control 49, 1127–1141 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yuste, S.B., Bejarano, J.D.: Amplitude decay of damped nonlinear oscillators studied with Jacobian elliptic functions. J. Sound Vib. 114(1), 33–44 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yuste, S.B.: On Duffing oscillators with slowly varying parameters. Int. J. Nonlinear Mech. 5, 671–677 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yuste, S.B.: Comments on the method af harmonic balance in which Jacobi elliptic functions are used. J. Sound Vib. 145, 381–390 (1991)

    Article  Google Scholar 

  14. Chen, S.H., Cheung, Y.K.: An elliptic perturbation method for certain strongly nonlinear oscillators. J. Sound Vib. 192, 453–464 (1996)

    Article  MATH  Google Scholar 

  15. Chen, S.H., Cheung, Y.K.: An elliptic Lindstedt–Poincaré method for analysis of certain strongly nonlinear oscillators. Nonlinear Dyn. 12, 199–213 (1997)

    Article  MATH  Google Scholar 

  16. Liao, S.J., Chwang, A.T.: Application of homotopy analysis method in nonlinear oscillations. ASME J. Appl. Mech. 65, 914–922 (1998)

    Article  MathSciNet  Google Scholar 

  17. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Belendez, A., Hernández, A., Beléndez, T., Alvarez, M.I., Gallego, S., Ortuno, M., Neipp, C.: Application of the harmonic balance method to a linear oscillator typified by a mass attached to a streched wire. J. Sound Vib. 302, 1018–1029 (2007)

    Article  Google Scholar 

  20. Beléndez, A., Méndez, D.I., Fernández, E., Marini, S., Pascual, I.: An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method. Phys. Lett. A 373, 2805–2809 (2009)

    Article  MATH  Google Scholar 

  21. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. University Press, Cambridge (1980)

    MATH  Google Scholar 

  22. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, 9th edn. Dover, New York (1980)

    MATH  Google Scholar 

  23. Walker, P.: The analyticity of Jacobian functions with respect to the parameter \(k\). Proc. R. Soc. Lond. A 459, 2569–2574 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Johannessen, K.: An analytical solution to the equation of motion to the damped nonlinear pendulum. Eur. J. Phys. 35, 035014 (2014)

    Article  MATH  Google Scholar 

  25. Johannessen, K.: The Duffing oscillator with damping. Eur. J. Phys. 36, 065020 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Johannessen.

Appendix: The Derivation of the Function \(\xi (u)\)

Appendix: The Derivation of the Function \(\xi (u)\)

In this section the scaling function \(\xi (u)\) is derived such that the relationsship:

$$\begin{aligned} {\xi }^{\prime }-\frac{{m}^{\prime }}{m} f= 1 \end{aligned}$$
(21)

is fulfilled for any value of the variable u [24, 25]. The function f(u) is for small values of the elliptic parameter approximately given by \(f(u)\cong (\frac{1}{4}m(u)+\frac{9}{32}m(u)^{2}) u\) [24, 25], and the elliptic parameter m is in the present case given by Eq. (12):

$$\begin{aligned} m(u)=\frac{a e^{-2 \gamma u}}{1-a e^{-2 \gamma u}} \end{aligned}$$

It is seen, that with increasing values of u the elliptic parameter varies between the maximum value of \(m(0)=a/{(1-a)}\) towards zero value.

From Eq. (21) one now finds that:

$$\begin{aligned}&{\xi }^{\prime }\cong 1+\frac{{m}^{\prime }}{m} f\\&\quad \Updownarrow \\&{\xi }^{\prime }\cong 1+\left( \frac{1}{4}+\frac{9}{32}m\right) {m}^{\prime } u\\&\quad \Updownarrow \\&\xi \cong u+\int {\left( \frac{1}{4}+\frac{9}{32}m\right) \frac{dm}{du} u}\, du\, + const. \end{aligned}$$

Using integration by parts this gives:

$$\begin{aligned}&\xi \cong u+\left( \frac{1}{4}m+\frac{9}{64}m^{2}\right) u-\int {\left( \frac{1}{4}m+\frac{9}{64}m^{2}\right) } du\, + const.\\&\quad \Updownarrow \\&\xi \cong \left( 1+\frac{1}{4}m+\frac{9}{64}m^{2}\right) u-\frac{1}{4} \int {\frac{a e^{-2 \gamma u}}{1-a e^{-2 \gamma u}}} du-\frac{9}{64} \int {\frac{a^{2} e^{-4 \gamma u}}{\left( 1-a e^{-2 \gamma u}\right) ^{2}}} du\, +const. \end{aligned}$$

By use of the substitution, \(v=1-a e^{-2 \gamma u}\), both of these integrals are easily evaluated and one finds that:

$$\begin{aligned} \xi\cong & {} \left( 1+\frac{1}{4}m+\frac{9}{64}m^{2}\right) u-\frac{1}{8 \gamma } \ln \left( 1-a e^{-2 \gamma u}\right) \\&+\frac{9}{128 \gamma } \left( {\ln (1-a e^{-2 \gamma u})+\frac{1}{1-a e^{-2 \gamma u}}} \right) \, + const. \end{aligned}$$

Finally, the constant of integration is found from the criteria, that \(\xi (0)=0\), and thus an expression for the parameter scaling expression \(\xi (u)\) is:

$$\begin{aligned} \xi\cong & {} \left( 1+\frac{1}{4}m+\frac{9}{64}m^{2}\right) u-\frac{1}{8 \gamma } \ln \left( {\frac{1-a e^{-2 \gamma u}}{1-a}} \right) \nonumber \\&+\frac{9}{128 \gamma } \left( {\ln \left( {\frac{1-a e^{-2 \gamma u}}{1-a}} \right) +\frac{1}{1-a e^{-2 \gamma u}}-\frac{1}{1-a}} \right) \end{aligned}$$
(22)

In the limit of \(\gamma \rightarrow 0\) we have \(\xi (u)\rightarrow u\) as expected, which can readily be verified by use of the theorem by L’Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johannessen, K. The Duffing Oscillator with Damping for a Softening Potential. Int. J. Appl. Comput. Math 3, 3805–3816 (2017). https://doi.org/10.1007/s40819-017-0333-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0333-5

Keywords

Navigation