Skip to main content
Log in

Picture Fuzzy Parameterized Picture Fuzzy Soft Sets and Their Application in a Performance-Based Value Assignment Problem to Salt-and-Pepper Noise Removal Filters

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

A Publisher Correction to this article was published on 27 September 2023

This article has been updated

Abstract

In real-world problems such as voting for an election, decisions of the electorate may be split into three types: yes, no, and abstain. The concept of picture fuzzy sets (pf-sets) has been put forward to model such problems. This study introduces a new concept, i.e., picture fuzzy parameterized picture fuzzy soft sets (pfppfs-sets), to model problems containing parameters and alternatives with picture fuzzy membership. Afterwards, it proposes a soft decision-making (SDM) method via pfppfs-sets. Next, the proposed SDM method is applied to a performance-based value assignment (PVA) problem to salt-and-pepper noise (SPN) removal filters and compared with the four SDM methods in different structures. The results manifest that pfppfs-sets and the proposed SDM method produce consistent ranking order for PVA problems to SPN removal filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Abbreviations

\(\mu (x)\) :

Membership degree of x

\(\nu (x)\) :

Non-membership degree of x

\(\eta (x)\) :

Neutral membership degree of x

pf-sets:

Picture fuzzy sets

\(\left\langle \begin{array}{l} {\mu (x)}\\ {\eta (x)}\\ {\nu (x)} \end{array}\right\rangle\) :

Picture fuzzy value of x

pfs-sets:

Picture fuzzy soft sets

gpfs-sets:

Generalized picture fuzzy soft sets

fpfs-sets:

Fuzzy parametrized fuzzy soft sets

ifpifs-sets:

Intuitionistic fuzzy parametrized

intuitionistic fuzzy soft sets

ivifpivifs-sets:

Interval-valued intuitionistic fuzzy

parametrized interval-valued

intuitionistic fuzzy soft sets

pfppfs-sets:

Picture fuzzy parametrized

picture fuzzy soft sets

SDM:

Soft decision-making

PVA:

Performance-based value assignment

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  2. Aydın, T., Enginoğlu, S.: Interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft sets and their application in decision-making. J. Ambient. Intell. Humaniz. Comput. 12(1), 1541–1558 (2021). https://doi.org/10.1007/s12652-020-02227-0

    Article  Google Scholar 

  3. Aydın, T., Enginoğlu, S.: Interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft matrices and their application to performance-based value assignment to noise-removal filters. Compu. Appl. Math. 41(4), Artilcle No: 192 (2022). https://doi.org/10.1007/s40314-022-01893-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Mushrif, M.M., Senqupta, S., Ray, A.K.: Texture classification using a novel, soft-set theory based classification algorithm. In: P.J. Narayanan, S.K. Nayar, H.Y. Shum (eds.) 7th Asian Conference on Computer Vision, pp. 246–254. Hyderabad, India (2006). https://doi.org/10.1007/11612032_26

  5. Çağman, N., Enginoğlu, S.: Soft matrix theory and its decision making. Comput. Math. Appl. 59, 3308–3314 (2010). https://doi.org/10.1016/j.camwa.2010.03.015

    Article  MathSciNet  MATH  Google Scholar 

  6. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer Science+Business Media, New York (2011)

    Google Scholar 

  7. Çağman, N., Enginoğlu, S.: Fuzzy soft matrix theory and its application in decision making. Iran. J. Fuzzy Syst. 9(1), 109–119 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/10.1016/0165-0114(89)90205-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. Springer-Verlag, Berlin, Heidelberg (2012)

    Book  MATH  Google Scholar 

  10. Cuong, B.C.: Picture fuzzy sets. J. Comput. Sci. Cybern. 30(4), 409–420 (2014)

    Google Scholar 

  11. Memiş, S.: A study on picture fuzzy sets. In: Çuvalcıoğlu, G. (ed.) 7th IFS and Contemporary Mathematics Conference, pp. 125–132. Mersin, Turkey (2021)

    Google Scholar 

  12. Rehman, U., Mahmood, T.: Picture fuzzy N-soft sets and their applications in decision-making problems. Fuzzy Inf. Eng. 13(3), 335–367 (2021). https://doi.org/10.1080/16168658.2021.1943187

    Article  Google Scholar 

  13. Mahmood, T., Rehman, U.: A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures. Int. J. Intell. Syst. 37(1), 535–567 (2022). https://doi.org/10.1002/int.22639

    Article  Google Scholar 

  14. Ali, Z., Mahmood, T., Yang, M.S.: TOPSIS method based on complex spherical fuzzy sets with bonferroni mean operators. Mathematics 8(10), 1739 (2020). https://doi.org/10.3390/math8101739

    Article  Google Scholar 

  15. Molodtsov, D.: Soft set theory-first results. Comput. Math. Appl. 37(4–5), 19–31 (1999). https://doi.org/10.1016/S0898-1221(99)00056-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Aktaş, H., Çağman, N.: Soft sets and soft groups. Inf. Sci. 2007(13), 2726–2735 (2007). https://doi.org/10.1016/j.ins.2006.12.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Sezgin, A., Çağman, N., Çıtak, F.: \(\alpha\)-inclusions applied to group theory via soft set and logic. Commun. Faculty Sci. Univ. Ankara Ser. A1 Math. Stat. 68(1), 334–352 (2019)

  18. Sezgin, A., Atagün, A.O., Çağman, N., Demir, H.: On near-rings with soft union ideals and applications. New Math. Nat. Comput. 18(2), 495–511 (2022). https://doi.org/10.1142/S1793005722500247

    Article  Google Scholar 

  19. Enginoğlu, S., Çağman, N., Karataş, S., Aydın, T.: On soft topology. El-Cezerî J. Sci. Eng. 2(3), 23–38 (2015). https://doi.org/10.31202/ecjse.67135

    Article  Google Scholar 

  20. Riaz, M., Hashmi, M.R.: Soft rough Pythagorean M-polar fuzzy sets and Pythagorean M-polar fuzzy soft rough sets with application to decision-making. Comput. Appl. Math. 39(1), 1–36 (2020). https://doi.org/10.1007/s40314-019-0989-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Aydın, T., Enginoğlu, S.: Some results on soft topological notions. J. New Results Sci. 10(1), 65–75 (2021)

    Google Scholar 

  22. Atanassov, K.T.: New topological operator over intuitionistic fuzzy sets. J. Comput. Cogn. Eng. 1(3), 94–102 (2022). https://doi.org/10.47852/bonviewJCCE2202197

    Article  Google Scholar 

  23. Enginoğlu, S., Memiş, S.: Comment on fuzzy soft sets [The Journal of Fuzzy Mathematics 9(3), 2001, 589–602]. Int. J. Latest Eng. Res. App. 3(9), 1–9 (2018)

    Google Scholar 

  24. Enginoğlu, S., Memiş, S.: A configuration of some soft decision-making algorithms via FPFS-matrices. Cumhuriyet Sci. J. 39(4), 871–881 (2018). https://doi.org/10.17776/csj.409915

    Article  Google Scholar 

  25. Enginoğlu, S., Memiş, S.: A review on an application of fuzzy soft set in multicriteria decision making problem [P. K. Das, R. Borgohain, International Journal of Computer Applications 38 (2012) 33-37]. In: M. Akgül, İ. Yılmaz, A. İpek (eds.) International Conference on Mathematical Studies and Applications 2018, pp. 173–178. Karaman, Turkey (2018)

  26. Enginoğlu, S., Memiş, S.: A review on some soft decision-making methods. In: Akgül, M., Yılmaz, İ, İpek, A. (eds.) International Conference on Mathematical Studies and Applications 2018, pp. 437–442. Karaman, Turkey (2018)

    Google Scholar 

  27. Enginoğlu, S., Memiş, S., Arslan, B.: Comment (2) on soft set theory and uni-int decision-making [European Journal of Operational Research, (2010) 207, 848–855]. J. New Theor. 25, 84–102 (2018)

    Google Scholar 

  28. Enginoğlu, S., Memiş, S., Öngel, T.: Comment on soft set theory and uni-int decision-making [European Journal of Operational Research, (2010) 207, 848–855]. J. New Results Sci. 7(3), 28–43 (2018)

    Google Scholar 

  29. Molodtsov, D.: The Theory of Soft Sets. URSS Publishers, Moscow (2011). (in Russian)

    MATH  Google Scholar 

  30. Enginoğlu, S., Aydın, T., Memiş, S., Arslan, B.: Operability-oriented configurations of the soft decision-making methods proposed between 2013 and 2016 and their comparisons. J. New Theor. 34, 82–114 (2021)

    Google Scholar 

  31. Enginoğlu, S., Aydın, T., Memiş, S., Arslan, B.: SDM methods’ configurations (2017–2019) and their application to a performance-based value assignment problem: A follow up study. Ann. Optim. Theor. Practice 4(1), 41–85 (2021). https://doi.org/10.22121/AOTP.2021.287404.1069

  32. Arslan, B., Aydın, T., Memiş, S., Enginoğlu, S.: Generalisations of SDM methods in FPFS-matrices space to render them operable in IFPIFS-matrices space and their application to performance ranking of the noise-removal filters. J. New Theor. 36, 88–116 (2021)

    Article  Google Scholar 

  33. Çağman, N., Enginoğlu, S.: Soft set theory and uni-int decision making. Eur. J. Oper. Res. 207, 848–855 (2010). https://doi.org/10.1016/j.ejor.2010.05.004

    Article  MathSciNet  MATH  Google Scholar 

  34. Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Çağman, N., Enginoğlu, S., Çıtak, F.: Fuzzy soft set theory and its applications. Iran. J. Fuzzy Syst. 8(3), 137–147 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Çağman, N., Çıtak, F., Enginoğlu, S.: FP-soft set theory and its applications. Ann. Fuzzy Math. Info. 2(2), 219–226 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Çağman, N., Çıtak, F., Enginoğlu, S.: Fuzzy parameterized fuzzy soft set theory and its applications. Turk. J. Fuzzy Syst. 1(1), 21–35 (2010)

    MATH  Google Scholar 

  38. Maji, P.K., Biswas, R., Roy, A.R.: Intuitionistic fuzzy soft sets. J. Fuzzy Math. 9(3), 677–692 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Deli, İ, Çağman, N.: Relations on FP-soft sets applied to decision making problems. J. New Theor. (2015). https://doi.org/10.1016/j.asoc.2014.11.053

    Article  MATH  Google Scholar 

  40. Karaaslan, F.: Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets with applications in decision making. Ann. Fuzzy Math. Inf. 11(4), 607–619 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Liang, C., Ji, S., Liu, T.: Adjustable soft discernibility matrix based on picture fuzzy soft sets and its applications in decision making. J. Intell. Fuzzy Syst. 29(4), 1711–1722 (2015). https://doi.org/10.3233/IFS-151648

    Article  MathSciNet  MATH  Google Scholar 

  42. Naeem, K., Memiş, S.: Picture fuzzy soft -algebra and picture fuzzy soft measure and their applications to multi-criteria decision-making. Granular Comput. 8(2), 397–410 (2023). https://doi.org/10.1007/s41066-022-00333-2

    Article  Google Scholar 

  43. Khan, M.J., Kumam, P., Ashraf, S., Kumam, W.: Generalized picture fuzzy soft sets and their application in decision support systems. Symmetry 11, 415 (2019). https://doi.org/10.3390/sym11030415

    Article  MATH  Google Scholar 

  44. Erkan, U., Gökrem, L.: A new method based on pixel density in salt and pepper noise removal. Turk. J. Electr. Eng. Comput. Sci. 26(1), 162–171 (2018). https://doi.org/10.3906/elk-1705-256

    Article  Google Scholar 

  45. Esakkirajan, S., Veerakumar, T., Subramanyam, A.N., PremChand, C.H.: Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Process. Lett. 18(5), 287–290 (2011). https://doi.org/10.1109/LSP.2011.2122333

    Article  Google Scholar 

  46. Pattnaik, A., Agarwal, S., Chand, S.: A new and efficient method for removal of high density salt and pepper noise through cascade decision based filtering algorithm. Procedia Technol. 6, 108–117 (2012). https://doi.org/10.1016/j.protcy.2012.10.014

    Article  Google Scholar 

  47. Toh, K.K.V., Isa, N.A.M.: Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process. Lett. 17(3), 281–284 (2010). https://doi.org/10.1109/LSP.2009.2038769

    Article  Google Scholar 

  48. Erkan, U., Gökrem, L., Enginoğlu, S.: Different applied median filter in salt and pepper noise. Comput. Electr. Eng. 70, 789–798 (2018). https://doi.org/10.1016/j.compeleceng.2018.01.019

    Article  Google Scholar 

  49. Zhang, P., Li, F.: A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Process. Lett. 21(10), 1280–1283 (2014). https://doi.org/10.1109/LSP.2009.2038769

    Article  Google Scholar 

  50. Enginoğlu, S., Erkan, U., Memiş, S.: Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal. Multimedia Tools Appl. 78, 35401–35418 (2019). https://doi.org/10.1007/s11042-019-08110-1

    Article  Google Scholar 

  51. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  52. Weber, A.G.: The USC-SIPI image database version 5. University of Southern California (1997)

    Google Scholar 

  53. Saad, M., Rafiq, A., Perez-Dominguez, L.: Methods for multiple attribute group decision making based on picture fuzzy Dombi Hamy mean operator. J. Comput. Cogn. Eng. (2023). https://doi.org/10.47852/bonviewJCCE2202206

    Article  Google Scholar 

  54. Khan, M.J., Kumam, P., Liu, P., Kumam, W., Rehman, H.: An adjustable weighted soft discernibility matrix based on generalized picture fuzzy soft set and its applications in decision making. J. Intell. Fuzzy Syst. 38(2), 2103–2118 (2020). https://doi.org/10.3233/JIFS-190812

    Article  Google Scholar 

  55. Lu, H., Khalil, A.M., Alharbi, W.: A new type of generalized picture fuzzy soft set and its application in decision making. J. Intell. Fuzzy Syst. 40(6), 12459–12475 (2021). https://doi.org/10.3233/JIFS-201706

    Article  Google Scholar 

  56. Enginoğlu, S., Arslan, B.: Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices and their application in decision-making. Comput. Appl. Math. 39, 325 (2020). https://doi.org/10.1007/s40314-020-01325-1

    Article  MathSciNet  MATH  Google Scholar 

  57. Memiş, S., Enginoğlu, S., Erkan, U.: A classification method in machine learning based on soft decision-making via fuzzy parameterized fuzzy soft matrices. Soft Comput. 26(3), 1165–1180. https://doi.org/10.1007/s00500-021-06553-z

  58. Memiş, S., Enginoğlu, S., Erkan, U.: A new classification method using soft decision-making based on an aggregation operator of fuzzy parameterized fuzzy soft matrices. Turk. J. Electr. Eng. Comput. Sci. 30(3), 871–890 (2022). https://doi.org/10.3906/elk-2106-28

    Article  Google Scholar 

  59. Memiş, S., Enginoğlu, S., Erkan, U.: Fuzzy parameterized fuzzy soft k-nearest neighbor classifier. Neuroomputing 500, 351–378. https://doi.org/10.1016/j.neucom.2022.05.041

  60. Memiş, S., Enginoğlu, S., Erkan, U.: Numerical data classification via distance-based similarity measures of fuzzy parameterized fuzzy soft matrices. IEEE Access 9, 88583–88601 (2021). https://doi.org/10.1109/ACCESS.2021.3089849

    Article  Google Scholar 

  61. Memiş, S., Enginoğlu, S.: An application of fuzzy parameterized fuzzy soft matrices in data classification. In: M. Kılıç, K. Özkan, M. Karaboyacı, K. Taşdelen, H. Kandemir, A. Beram (eds.) International Conferences on Science and Technology; Natural Science and Technology ICONST-NST 2019, pp. 68–77. Prizren, Kosovo (2019). https://www.researchgate.net/publication/335524651

  62. Memiş, S., Enginoğlu, S., Erkan, U.: A data classification method in machine learning based on normalised hamming pseudo-similarity of fuzzy parameterized fuzzy soft matrices. Bilge Int. J. Sci. Technol. Res. 3, 1–8 (2019). https://doi.org/10.30516/bilgesci.643821

    Article  Google Scholar 

  63. Memiş, S., Arslan, B., Aydın, T., Enginoğlu, S., Camcı5, Ç.: A classification method based on hamming pseudo-similarity of intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices. J. New Results Sci. 10(2), 59–76 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samet Memiş.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

The original online version of this article was revised due to formulas in Definition 22, Definition 23, Definition 27, Example 5 and Example 6 were incorrectly formatted and corrected in this version. In addition, the abbreviations list was incorrectly published as Table 1 and corrected in this version.

Appendix

Appendix

$$\begin{aligned} \alpha= & {} \left\{ \left( {\left\langle \begin{array}{c} 0.1\\ 0.5\\ 0.9 \end{array}\right\rangle }x_1, \left\{ {\left\langle \begin{array}{c} 0.9783\\ 0.0783\\ 0.0217 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.9796\\ 0.0796\\ 0.0204 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.9774\\ 0.0774\\ 0.0226 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.9748\\ 0.0748\\ 0.0252 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9748\\ 0.0854\\ 0.0146 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9728\\ 0.0728\\ 0.0272 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9868\\ 0.0868\\ 0.0132 \end{array}\right\rangle }u_7\right\} \right) ,\right. \\{} & {} \left( {\left\langle \begin{array}{c} 0.2\\ 0.5\\ 0.8 \end{array}\right\rangle }x_2, \left\{ {\left\langle \begin{array}{c} 0.9536\\ 0.1536\\ 0.0464 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.9584\\ 0.1584\\ 0.0416 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.9197\\ 0.1197\\ 0.0803 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.9504\\ 0.1504\\ 0.0496 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9699\\ 0.1699\\ 0.0301 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9622\\ 0.1622\\ 0.0378 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9735\\ 0.1735\\ 0.0265 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.3\\ 0.5\\ 0.7 \end{array}\right\rangle }x_3, \left\{ {\left\langle \begin{array}{c} 0.9229\\ 0.2229\\ 0.0771 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.9315\\ 0.2315\\ 0.0685 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8117\\ 0.1117\\ 0.1883 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.9248\\ 0.2248\\ 0.0752 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9516\\ 0.2516\\ 0.0484 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9484\\ 0.2484\\ 0.0516 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9581\\ 0.2581\\ 0.0419 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.4\\ 0.5\\ 0.6 \end{array}\right\rangle }x_4, \left\{ {\left\langle \begin{array}{c} 0.8838\\ 0.2838\\ 0.1162 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.8968\\ 0.2968\\ 0.1032 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.7973\\ 0.1973\\ 0.2027 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.8973\\ 0.2973\\ 0.1027 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9303\\ 0.3303\\ 0.0697 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9315\\ 0.3315\\ 0.0685 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9400\\ 0.3400\\ 0.0600 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.5\\ 0.5\\ 0.5 \end{array}\right\rangle }x_5, \left\{ {\left\langle \begin{array}{c} 0.8323\\ 0.3323\\ 0.1677 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.8520\\ 0.3520\\ 0.1480 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8399\\ 0.3399\\ 0.1601 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.8666\\ 0.3666\\ 0.1334 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9051\\ 0.4051\\ 0.0949 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9098\\ 0.4098\\ 0.0902 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9173\\ 0.4173\\ 0.0827 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.6\\ 0.5\\ 0.4 \end{array}\right\rangle }x_6, \left\{ {\left\langle \begin{array}{c} 0.7634\\ 0.3634\\ 0.2366 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.7949\\ 0.3949\\ 0.2051 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8410\\ 0.4410\\ 0.1590 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.8320\\ 0.4320\\ 0.1680 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.8748\\ 0.4748\\ 0.1252 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.8816\\ 0.4816\\ 0.1184 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.8880\\ 0.4880\\ 0.1120 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.7\\ 0.5\\ 0.3 \end{array}\right\rangle }x_7, \left\{ {\left\langle \begin{array}{c} 0.6680\\ 0.3680\\ 0.3320 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.7213\\ 0.4213\\ 0.2787 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8025\\ 0.5025\\ 0.1975 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.7910\\ 0.4910\\ 0.2090 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.8368\\ 0.5368\\ 0.1632 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.8437\\ 0.5437\\ 0.1563 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.8491\\ 0.5491\\ 0.1509 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.8\\ 0.5\\ 0.2 \end{array}\right\rangle }x_8, \left\{ {\left\langle \begin{array}{c} 0.5096\\ 0.3096\\ 0.4904 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.6265\\ 0.4265\\ 0.3735 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.7023\\ 0.5023\\ 0.2977 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.7357\\ 0.5357\\ 0.2643 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.7846\\ 0.5846\\ 0.2154 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.7904\\ 0.5904\\ 0.2096 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.7947\\ 0.5947\\ 0.2053 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left. \left( {\left\langle \begin{array}{c} 0.9\\ 0.5\\ 0.1 \end{array}\right\rangle }x_9, \left\{ {\left\langle \begin{array}{c} 0.2585\\ 0.1585\\ 0.7415 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.4966\\ 0.3966\\ 0.5034 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.3566\\ 0.2566\\ 0.6434 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.6190\\ 0.5190\\ 0.3810 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.6964\\ 0.5964\\ 0.3036 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.7028\\ 0.6028\\ 0.2972 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.7056\\ 0.6056\\ 0.2944 \end{array}\right\rangle }u_7\right\} \right) \right\} \\{} & {} \alpha_2=\left\{ \left( {\left\langle \begin{array}{c} 0.1\\ 1\\ 0.9 \end{array}\right\rangle }x_1, \left\{ {\left\langle \begin{array}{c} 0.9783\\ 1\\ 0.0217 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.9796\\ 1\\ 0.0204 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.9774\\ 1\\ 0.0226 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.9748\\ 1\\ 0.0252 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9748\\ 1\\ 0.0146 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9728\\ 1\\ 0.0272 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9868\\ 1\\ 0.0132 \end{array}\right\rangle }u_7\right\} \right) ,\right. \\{} & {} \left( {\left\langle \begin{array}{c} 0.2\\ 1\\ 0.8 \end{array}\right\rangle }x_2, \left\{ {\left\langle \begin{array}{c} 0.9536\\ 1\\ 0.0464 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.9584\\ 1\\ 0.0416 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.9197\\ 1\\ 0.0803 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.9504\\ 1\\ 0.0496 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9699\\ 1\\ 0.0301 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9622\\ 1\\ 0.0378 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9735\\ 1\\ 0.0265 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.3\\ 1\\ 0.7 \end{array}\right\rangle }x_3, \left\{ {\left\langle \begin{array}{c} 0.9229\\ 1\\ 0.0771 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.9315\\ 1\\ 0.0685 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8117\\ 1\\ 0.1883 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.9248\\ 1\\ 0.0752 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9516\\ 1\\ 0.0484 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9484\\ 1\\ 0.0516 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9581\\ 1\\ 0.0419 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.4\\ 1\\ 0.6 \end{array}\right\rangle }x_4, \left\{ {\left\langle \begin{array}{c} 0.8838\\ 1\\ 0.1162 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.8968\\ 1\\ 0.1032 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.7973\\ 1\\ 0.2027 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.8973\\ 1\\ 0.1027 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9303\\ 1\\ 0.0697 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9315\\ 1\\ 0.0685 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9400\\ 1\\ 0.0600 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.5\\ 1\\ 0.5 \end{array}\right\rangle }x_5, \left\{ {\left\langle \begin{array}{c} 0.8323\\ 1\\ 0.1677 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.8520\\ 1\\ 0.1480 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8399\\ 1\\ 0.1601 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.8666\\ 1\\ 0.1334 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.9051\\ 1\\ 0.0949 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.9098\\ 1\\ 0.0902 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.9173\\ 1\\ 0.0827 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.6\\ 1\\ 0.4 \end{array}\right\rangle }x_6, \left\{ {\left\langle \begin{array}{c} 0.7634\\ 1\\ 0.2366 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.7949\\ 1\\ 0.2051 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8410\\ 1\\ 0.1590 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.8320\\ 1\\ 0.1680 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.8748\\ 1\\ 0.1252 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.8816\\ 1\\ 0.1184 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.8880\\ 1\\ 0.1120 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.7\\ 1\\ 0.3 \end{array}\right\rangle }x_7, \left\{ {\left\langle \begin{array}{c} 0.6680\\ 1\\ 0.3320 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.7213\\ 1\\ 0.2787 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.8025\\ 1\\ 0.1975 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.7910\\ 1\\ 0.2090 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.8368\\ 1\\ 0.1632 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.8437\\ 1\\ 0.1563 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.8491\\ 1\\ 0.1509 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left( {\left\langle \begin{array}{c} 0.8\\ 1\\ 0.2 \end{array}\right\rangle }x_8, \left\{ {\left\langle \begin{array}{c} 0.5096\\ 1\\ 0.4904 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.6265\\ 1\\ 0.3735 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.7023\\ 1\\ 0.2977 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.7357\\ 1\\ 0.2643 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.7846\\ 1\\ 0.2154 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.7904\\ 1\\ 0.2096 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.7947\\ 1\\ 0.2053 \end{array}\right\rangle }u_7\right\} \right) ,\\{} & {} \left. \left( {\left\langle \begin{array}{c} 0.9\\ 1\\ 0.1 \end{array}\right\rangle }x_9, \left\{ {\left\langle \begin{array}{c} 0.2585\\ 1\\ 0.7415 \end{array}\right\rangle }u_1, {\left\langle \begin{array}{c} 0.4966\\ 1\\ 0.5034 \end{array}\right\rangle }u_2, {\left\langle \begin{array}{c} 0.3566\\ 1\\ 0.6434 \end{array}\right\rangle }u_3, {\left\langle \begin{array}{c} 0.6190\\ 1\\ 0.3810 \end{array}\right\rangle }u_4, {\left\langle \begin{array}{c} 0.6964\\ 1\\ 0.3036 \end{array}\right\rangle }u_5, {\left\langle \begin{array}{c} 0.7028\\ 1\\ 0.2972 \end{array}\right\rangle }u_6, {\left\langle \begin{array}{c} 0.7056\\ 1\\ 0.2944 \end{array}\right\rangle }u_7\right\} \right) \right\} \\{} & {} \alpha_3=\left\{ \left( ^{0.1}x_1, \left\{ ^{0.9783}u_1, ^{0.9796}u_2, ^{0.9774}u_3, ^{0.9748}u_4, ^{0.9748}u_5, ^{0.9728}u_6, ^{0.9868}u_7\right\} \right) ,\right. \\{} & {} \left( ^{0.2}x_2, \left\{ ^{0.9536}u_1, ^{0.9584}u_2, ^{0.9197}u_3, ^{0.9504}u_4, ^{0.9699}u_5, ^{0.9622}u_6, ^{0.9735}u_7\right\} \right) ,\\{} & {} \left( ^{0.3}x_3, \left\{ ^{0.9229}u_1, ^{0.9315}u_2, ^{0.8117}u_3, ^{0.9248}u_4, ^{0.9516}u_5, ^{0.9484}u_6, ^{0.9581}u_7\right\} \right) ,\\{} & {} \left( ^{0.4}x_4, \left\{ ^{0.8838}u_1, ^{0.8968}u_2, ^{0.7973}u_3, ^{0.8973}u_4, ^{0.9303}u_5, ^{0.9315}u_6, ^{0.9400}u_7\right\} \right) ,\\{} & {} \left( ^{0.5}x_5, \left\{ ^{0.8323}u_1, ^{0.8520}u_2, ^{0.8399}u_3, ^{0.8666}u_4, ^{0.9051}u_5, ^{0.9098}u_6, ^{0.9173}u_7\right\} \right) ,\\{} & {} \left( ^{0.6}x_6, \left\{ ^{0.7634}u_1, ^{0.7949}u_2, ^{0.8410}u_3, ^{0.8320}u_4, ^{0.8748}u_5, ^{0.8816}u_6, ^{0.8880}u_7\right\} \right) ,\\{} & {} \left( ^{0.7}x_7, \left\{ ^{0.6680}u_1, ^{0.7213}u_2, ^{0.8025}u_3, ^{0.7910}u_4, ^{0.8368}u_5, ^{0.8437}u_6, ^{0.8491}u_7\right\} \right) ,\\{} & {} \left( ^{0.8}x_8, \left\{ ^{0.5096}u_1, ^{0.6265}u_2, ^{0.7023}u_3, ^{0.7357}u_4, ^{0.7846}u_5, ^{0.7904}u_6, ^{0.7947}u_7\right\} \right) ,\\{} & {} \left. \left( ^{0.9}x_9, \left\{ ^{0.2585}u_1, ^{0.4966}u_2, ^{0.3566}u_3, ^{0.6190}u_4, ^{0.6964}u_5, ^{0.7028}u_6, ^{0.7056}u_7\right\} \right) \right\} \\{} & {} \alpha_4=\left\{ \left( ^{0.1}_{0.9}x_1, \left\{ ^{0.9783}_{0.0217}u_1, ^{0.9796}_{0.0204}u_2, ^{0.9774}_{0.0226}u_3, ^{0.9748}_{0.0252}u_4, ^{0.9748}_{0.0146}u_5, ^{0.9728}_{0.0272}u_6, ^{0.9868}_{0.0132}u_7\right\} \right) ,\right. \\{} & {} \left( ^{0.2}_{0.8}x_2, \left\{ ^{0.9536}_{0.0464}u_1, ^{0.9584}_{0.0416}u_2, ^{0.9197}_{0.0803}u_3, ^{0.9504}_{0.0496}u_4, ^{0.9699}_{0.0301}u_5, ^{0.9622}_{0.0378}u_6, ^{0.9735}_{0.0265}u_7\right\} \right) ,\\{} & {} \left( ^{0.3}_{0.7}x_3, \left\{ ^{0.9229}_{0.0771}u_1, ^{0.9315}_{0.0685}u_2, ^{0.8117}_{0.1883}u_3, ^{0.9248}_{0.0752}u_4, ^{0.9516}_{0.0484}u_5, ^{0.9484}_{0.0516}u_6, ^{0.9581}_{0.0419}u_7\right\} \right) ,\\{} & {} \left( ^{0.4}_{0.6}x_4, \left\{ ^{0.8838}_{0.1162}u_1, ^{0.8968}_{0.1032}u_2, ^{0.7973}_{0.2027}u_3, ^{0.8973}_{0.1027}u_4, ^{0.9303}_{0.0697}u_5, ^{0.9315}_{0.0685}u_6, ^{0.9400}_{0.0600}u_7\right\} \right) ,\\{} & {} \left( ^{0.5}_{0.5}x_5, \left\{ ^{0.8323}_{0.1677}u_1, ^{0.8520}_{0.1480}u_2, ^{0.8399}_{0.1601}u_3, ^{0.8666}_{0.1334}u_4, ^{0.9051}_{0.0949}u_5, ^{0.9098}_{0.0902}u_6, ^{0.9173}_{0.0827}u_7\right\} \right) ,\\{} & {} \left( ^{0.6}_{0.4}x_6, \left\{ ^{0.7634}_{0.2366}u_1, ^{0.7949}_{0.2051}u_2, ^{0.8410}_{0.1590}u_3, ^{0.8320}_{0.1680}u_4, ^{0.8748}_{0.1252}u_5, ^{0.8816}_{0.1184}u_6, ^{0.8880}_{0.1120}u_7\right\} \right) ,\\{} & {} \left( ^{0.7}_{0.3}x_7, \left\{ ^{0.6680}_{0.3320}u_1, ^{0.7213}_{0.2787}u_2, ^{0.8025}_{0.1975}u_3, ^{0.7910}_{0.2090}u_4, ^{0.8368}_{0.1632}u_5, ^{0.8437}_{0.1563}u_6, ^{0.8491}_{0.1509}u_7\right\} \right) ,\\{} & {} \left( ^{0.8}_{0.2}x_8, \left\{ ^{0.5096}_{0.4904}u_1, ^{0.6265}_{0.3735}u_2, ^{0.7023}_{0.2977}u_3, ^{0.7357}_{0.2643}u_4, ^{0.7846}_{0.2154}u_5, ^{0.7904}_{0.2096}u_6, ^{0.7947}_{0.2053}u_7\right\} \right) ,\\{} & {} \left. \left( ^{0.9}_{0.1}x_9, \left\{ ^{0.2585}_{0.7415}u_1, ^{0.4966}_{0.5034}u_2, ^{0.3566}_{0.6434}u_3, ^{0.6190}_{0.3810}u_4, ^{0.6964}_{0.3036}u_5, ^{0.7028}_{0.2972}u_6, ^{0.7056}_{0.2944}u_7\right\} \right) , \right\} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memiş, S. Picture Fuzzy Parameterized Picture Fuzzy Soft Sets and Their Application in a Performance-Based Value Assignment Problem to Salt-and-Pepper Noise Removal Filters. Int. J. Fuzzy Syst. 25, 2860–2875 (2023). https://doi.org/10.1007/s40815-023-01547-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01547-5

Keywords

Mathematics Subject Classification

Navigation