Skip to main content
Log in

Simultaneously Tracking and Pitch Control of Underwater Towed Vehicle with Multiple Elevators: A Finite-Time Fuzzy Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the motion control problem in the vertical plane of an underwater towed vehicle with multiple bow and stern elevators, in order to track the depth or the sea-bottom terrain while maintaining the desired pitch angle simultaneously. First, the dynamic model of the towed vehicle is established to illustrate the dynamic effects of bow and stern elevators on the vertical position and pitch angle, respectively. Second, based on the nominal model, a finite-time fuzzy adaptive control scheme is designed to deal with the control problem of two inputs from multiple elevators and two outputs for the vertical motion states. To reject uncertainties such as model uncertainty and external disturbances, robust and adaptive backstepping control laws are designed. Meanwhile, fuzzy approximation technique is employed to estimate the hydrodynamic terms. Based on the Lyapunov theory, the stability of the proposed control scheme is analyzed in detail. Finally, numerical simulation results show that the control laws guarantee the simultaneously tracking and pitch control in the presence of disturbance and enable the towed vehicle to follow the bottom terrain for the near-seabed survey mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karimi, H.R., Lu, Y.: Guidance and control methodologies for marine vehicles: a survey. Control Eng. Pract. 111(104), 785 (2021). https://doi.org/10.1016/j.conengprac.2021.104785

    Article  Google Scholar 

  2. Wang, N., Xu, H., Li, C., Yin, J.: Hierarchical path planning of unmanned surface vehicles: a fuzzy artificial potential field approach. Int. J. Fuzzy Syst. 23(6), 1797–1808 (2021). https://doi.org/10.1007/s40815-020-00912-y

    Article  Google Scholar 

  3. Paley, D.A., Zhang, F., Leonard, N.E.: Cooperative control for ocean sampling: the glider coordinated control system. IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008). https://doi.org/10.1109/TCST.2007.912238

    Article  Google Scholar 

  4. Xiang, G., Xiang, X.: 3D trajectory optimization of the slender body freely falling through water using cuckoo search algorithm. Ocean Eng. 235(109), 354 (2021). https://doi.org/10.1016/j.oceaneng.2021.109354

    Article  Google Scholar 

  5. Wang, Z., Yang, S., Xiang, X., Vasilijević, A., Mišković, N., Nad, D.: Cloud-based mission control of USV fleet: architecture, implementation and experiments. Control Eng. Pract. 106(104), 657 (2021). https://doi.org/10.1016/j.conengprac.2020.104657

    Article  Google Scholar 

  6. Peng, Z., Wang, J., Wang, D., Han, Q.L.: An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Trans. Ind. Inform. 3203(C), 1 (2020). https://doi.org/10.1109/tii.2020.3004343

    Article  Google Scholar 

  7. Zhang, Q., Zhang, J., Chemori, A.: Virtual submerged floating operational system for robotic manipulation. Complexity 9528, 313 (2018). https://doi.org/10.1155/2018/9528313

    Article  Google Scholar 

  8. Nakamura, M., Kajiwara, H., Koterayama, W.: Development of an ROV operated both as towed and self-propulsive vehicle. Ocean Eng. 28(1), 1–43 (2001). https://doi.org/10.1016/S0029-8018(99)00058-X

    Article  Google Scholar 

  9. Choi, J.K., Shiraishi, T., Tanaka, T., Kondo, H.: Safe operation of an autonomous underwater towed vehicle: towed force monitoring and control. Autom. Constr. 20(8), 1012–1019 (2011). https://doi.org/10.1016/j.autcon.2011.04.002

    Article  Google Scholar 

  10. Nomoto, M., Tsuji, Y., Misumi, A., Emura, T.: An advanced underwater towed vehicle for oceanographic measurements. In: Oceanology, pp. 79–87. Springer, Berlin (1986)

  11. Schuch, E.M., Linklater, A.C., Lambeth, N.W., Woolsey, C.A.: Design and simulation of a two stage towing system. In: Proceedings of OCEANS 2005 MTS/IEEE, pp. 1705–1712. IEEE (2005). https://doi.org/10.1109/OCEANS.2005.1640001

  12. Zhang, J., Xiang, X., Li, W.: Advances in marine intelligent electromagnetic detection system, technology and applications: a review. IEEE Sens. J. (2021). https://doi.org/10.1109/JSEN.2021.3129286

    Article  Google Scholar 

  13. Preston, J.M., Poeckert, R.: Distortion and break-up of sidescan images-criteria and reconstruction by geocoding. In: Proceedings of OCEANS’93, pp. I371–I377. IEEE (1993). https://doi.org/10.1109/OCEANS.1993.325981

  14. Woolsey, C.A., Gargett, A.E.: Passive and active attitude stabilization for a tow-fish. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 2, pp. 2099–2104. IEEE (2002). https://doi.org/10.1109/CDC.2002.1184839

  15. Kato, N.: Underwater towed vehicle maneuverable in both vertical and horizontal axis. In: The First International Offshore and Polar Engineering Conference. OnePetro (1991)

  16. Teixeira, F.C., Aguiar, A.P., Pascoal, A.: Nonlinear adaptive control of an underwater towed vehicle. Ocean Eng. 37(13), 1193–1220 (2010). https://doi.org/10.1016/j.oceaneng.2010.05.010

    Article  Google Scholar 

  17. Li, S., Wang, X.: Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49(11), 3359–3367 (2013). https://doi.org/10.1016/j.automatica.2013.08.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, N., Su, S.F.: Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Trans. Control Syst. Technol. 29 (2), 794–803 (2019). https://doi.org/10.1109/TCST.2019.2955657

    Article  Google Scholar 

  19. Wang, N., He, H.: Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle. IEEE Trans. Ind. Electron. 67(11), 9648–9658 (2019). https://doi.org/10.1109/TIE.2019.2952786

    Article  MathSciNet  Google Scholar 

  20. Guan, Z., Liu, H., Zheng, Z., Lungu, M., Ma, Y.: Fixed-time control for automatic carrier landing with disturbance. Aerosp. Sci. Technol. 108(106), 403 (2021). https://doi.org/10.1016/j.ast.2020.106403

    Article  Google Scholar 

  21. Huang, Y., Zhu, M., Zheng, Z.: Output-constrained fixed-time control for autonomous ship landing of helicopters. ISA Trans. 106, 221–232 (2020). https://doi.org/10.1016/j.isatra.2020.07.008

    Article  Google Scholar 

  22. Abkowitz, M.A.: Stability and Motion Control of Ocean Vehicles, Card Nr 70-93041. Massachusetts Institute of Technology, MIT, The MIT Press, Cambridge (1969)

    Google Scholar 

  23. Qin, H., Yang, H., Sun, Y., Zhang, Y.: Adaptive interval type-2 fuzzy fixed-time control for underwater walking robot with error constraints and actuator faults using prescribed performance terminal sliding-mode surfaces. Int. J. Fuzzy Syst. 23(4), 62199–63211 (2019). https://doi.org/10.1007/s40815-020-00949-z

    Article  Google Scholar 

  24. Liu, Y., Liu, X., Jing, Y., Zhang, Z.: A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(4), 646–658 (2019). https://doi.org/10.1109/TFUZZ.2018.2866264

    Article  Google Scholar 

  25. Wang, F., Chen, B., Liu, X., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207–1216 (2018). https://doi.org/10.1109/TFUZZ.2017.2717804

    Article  Google Scholar 

  26. Sun, K., Jianbin, Q., Karimi, H.R., Fu, Y.: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 6706(C), 1 (2020). https://doi.org/10.1109/tfuzz.2020.2979129

    Article  Google Scholar 

  27. Li, J., Xiang, X., Yang, S.: Robust adaptive neural network control for dynamic positioning of marine vessels with prescribed performance under model uncertainties and input saturation. Neurocomputing (2021). https://doi.org/10.1016/j.neucom.2021.03.136

    Article  Google Scholar 

  28. Zhu, C., Huang, B., Zhou, B., Su, Y., Zhang, E.: Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles. ISA Trans. 114, 57–71 (2021). https://doi.org/10.1016/j.isatra.2020.12.059

    Article  Google Scholar 

  29. Yamaguchi, S., Koterayama, W., Yokobiki, T.: Development of a motion control method for a towed vehicle with a long cable. In: Proceedings of the 2000 International Symposium on Underwater Technology, pp. 491–496. IEEE (2000). https://doi.org/10.1109/UT.2000.852593

  30. Toda, M.: A theoretic analysis of a control system structure of towed underwater vehicles. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 7526–7533. IEEE (2005). https://doi.org/10.1109/CDC.2005.1583376

  31. Yu, C., Xiang, X., Wilson, P.A., Zhang, Q.: Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics. IEEE Trans. Cybern. 50(5), 1887–1899 (2019). https://doi.org/10.1109/TCYB.2018.2890582

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (under Grant Nos. 52071153 and 5213000376), in part by the Fundamental Research Funds for the Central Universities (under Grant No. 2021yjsCXCY012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbo Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, J., Yang, S. et al. Simultaneously Tracking and Pitch Control of Underwater Towed Vehicle with Multiple Elevators: A Finite-Time Fuzzy Approach. Int. J. Fuzzy Syst. 25, 264–274 (2023). https://doi.org/10.1007/s40815-022-01270-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01270-7

Keywords

Navigation