Skip to main content
Log in

Design for a Fluidic Muscle Active Suspension Using Parallel-Type Interval Type-2 Fuzzy Sliding Control to improve Ride Comfort

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper uses two MacPherson struts and one fluidic muscle actuator (FMA) to design a fluidic muscle active suspension system (FMASS), allowing to provide active complementary force to suppress road vibration and improve ride comfort for passengers. The FMA outputs an additional force accompanying with the MacPherson struts so that FMASS has much powerful strength to stabilize the vehicle body. To regulate the vehicle body, a parallel type adaptive interval type-2 fuzzy sliding mode control (parallel-AIT2FSC) is presented in this paper. It has two AIT2FSCs in parallel: one controls the position and the other reduces acceleration. A fully functional test-rig is constructed to verify the feasibility of the FMASS using self-generated road conditions. In the experiments, the characteristics of the FMASS, such as the position and the vertical acceleration of the sprung mass, are demonstrated on two different road conditions and are presented in the time and frequency domains. The experimental results show that the vibration on the chassis is greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gohrle, C., Schindler, A., Wagner, A., Sawodny, O.: Design and vehicle implementation of preview active suspension controllers. IEEE Trans. Control Syst. Technol. 22(3), 1135–1142 (2014)

    Article  Google Scholar 

  2. Cao, D., Song, X., Ahmadian, M.: Editors’ perspectives: road vehicle suspension design, dynamics, and control. Veh. Syst. Dyn. 49(1–2), 3–28 (2011)

    Article  Google Scholar 

  3. Patil, S.A., Joshi, S.G.: Experimental analysis of 2 DOF quarter car passive and hydraulic active suspension systems for ride comfort. Syst. Sci. Control Eng. Open Access J. 2(1), 621–631 (2014)

    Article  Google Scholar 

  4. Van der Sande, T.P.J., Gysen, B.L.J., Besselink, I.J.M., et al.: Robust control of an electromagnetic active suspension system: simulations and measurements. Mechatronics 23(2), 204–212 (2013)

    Article  Google Scholar 

  5. Kang, R., Guo, Y., Chen, L., Branson, D.T., Dai, J.S.: Design of a pneumatic muscle based continuum robot with embedded tendons. IEEE/ASME Trans. Mechatron. 22(2), 751–761 (2017)

    Article  Google Scholar 

  6. Daerden, F., Lefeber, D.: Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)

    Google Scholar 

  7. Anakwa, W.K.N., Thomas, D.R., Jones, S.C., et al.: Development and control of a prototype pneumatic active suspension system. IEEE Trans. Educ. 45(1), 43–49 (2002)

    Article  Google Scholar 

  8. Nieto, A.J., Morales, A.L., González, A., et al.: An analytical model of pneumatic suspensions based on an experimental characterization. J. Sound Vib. 313, 290–307 (2008)

    Article  Google Scholar 

  9. Alireza, K.: Improving control mechanism of an active air-suspension system. Master Thesis, Eastern Mediterranean University (2013)

  10. Graf, G., Kieneke, R., Maas, J.: Pneumatic push–pull actuator for an active suspension. In: 5th IFAC Symposium on Mechatronic Systems 2010, Cambridge, MA, USA, Step 13–15.

  11. D’Amato, F.J., Viassolo, D.E.: Fuzzy control for active suspensions. Mechatronics 10(8), 897–920 (2000)

    Article  Google Scholar 

  12. Lin, J., Lian, R.J., Huang, C.N., Sie, W.T.: Enhanced fuzzy sliding mode controller for active suspension systems. Mechatronics 19, 1178–1190 (2009)

    Article  Google Scholar 

  13. Ostasevicius, V., Sapragonas, J., Rutka, A., Staliulionis, D.: Investigation of Active Car Suspension with Pneumatic Muscle. SAE MOBILUS, 01-2206 (2002)

  14. Zhong, X.F., Han, S.Y., Zhou, J., Chen, Y.H.: Design of optimal disturbance attenuation controller for networked T-S fuzzy vehicle active suspension with control delay. Int. J. Fuzzy Syst. 21, 676–684 (2019)

    Article  MathSciNet  Google Scholar 

  15. Bijan, R.S., Mohammad, S., Mehdi, R.: Control of active suspension system: an interval type-2 fuzzy approach. World Appl. Sci. J. 12(12), 2218–2228 (2011)

    Google Scholar 

  16. Krauze, P., Kasprzyk, J., Kozyra, A., Rzepecki, J.: Experimental analysis of vibration control algorithms applied for an off-road vehicle with magnetorheological dampers. J. Low Freq. Noise Vib. Act. Control 37(3), 619–639 (2018)

    Article  Google Scholar 

  17. Tang, X., Du, H., Sun, S., Ning, D., Xing, Z., Li, W.: Takagi-Sugeno fuzzy control for semi-active vehicle suspension with a magnetorheological damper and experimental validation. IEEE/ASME Trans. Mechatron. 22(1), 291–300 (2017)

    Article  Google Scholar 

  18. Chou, C.P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 1(2), 90–102 (1996)

    Article  Google Scholar 

  19. Bouri, M., Thomasset, D.: Sliding control of an electropneumatic actuator using an integral switching surface and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Control Syst. Technol. 9, 368–375 (2001)

    Article  Google Scholar 

  20. Slotine, E.J., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the Ministry of Science and Technology, Taiwan, R.O.C. under Grants Nos. MOST 109-2221-E-032-022, 110-2221-E-032-036. I would like to greatly thank Dr. Lian-Wang Lee for providing equipment for experiments and appreciate L.C. Jin and C.W. Wang for organizing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.-Hsum Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, IH. Design for a Fluidic Muscle Active Suspension Using Parallel-Type Interval Type-2 Fuzzy Sliding Control to improve Ride Comfort. Int. J. Fuzzy Syst. 24, 1719–1734 (2022). https://doi.org/10.1007/s40815-021-01229-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01229-0

Keywords

Navigation