Skip to main content
Log in

Assistive Robot Design for Lower Limbs Rehabilitation Using Fuzzy Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposed an assistive robot design for lower limbs rehabilitation using fuzzy control. A robot is developed to rejuvenate stroke patients’ nervous system of motor function by exercising their lower limb appropriately, to slow down motor function degradation, rebuild or strengthen the patient's motor function. Thus, the motion of robot must be driven from the sole of the patient and the shank of the patient must remain horizontal when knee joint is flexed. To achieve this target, discrete-time fuzzy control methodology has been used to design a controller for the stability of the robot system. Finally, the preliminary experimental results show the effectiveness of rehabilitation of the stroke patients using this assistive robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ministry of Health and welfare: Zhuyuan jiuzhen tongji. https://dep.mohw.gov.tw/DOS/cp-4648-50671-113.html (2018). Accessed 20 Aug 2020.

  2. Gittler, M., Davis, A.M.: Guidelines for adult stroke rehabilitation and recovery. J Am Med Assoc (2018). https://doi.org/10.1001/jama.2017.22036

    Article  Google Scholar 

  3. Ministry of Health and welfare: Biao 56+ yiyuan zhiye yishi renyuan shu—an quanshu biefen. https://dep.mohw.gov.tw/DOS/cp-3056-12186-113.html (2007). Accessed 20 Aug 2020.

  4. Ministry of Health and welfare: 105 nian yishi jigou xiankuang ji fuwuliang tongji nianbao. https://dep.mohw.gov.tw/DOS/cp-3555-37237-113.html. (2019). Accessed 20 Aug 2020.

  5. Ministry of Health and welfare: 106 nian yiliao jigou xiankuang ji yiyuan yiliao fuwuliang tongji. https://dep.mohw.gov.tw/DOS/cp-4033-42732-113.html (2020). Accessed 20 Aug 2020.

  6. Ministry of Health and welfare: 107 nian yiliao jigou xiankuang ji fuwuliang tongji nianbao. https://dep.mohw.gov.tw/DOS/lp-4487-113.html (2020). Accessed 20 Aug 2020.

  7. Ministry of Health and welfare: 108 nian yiliao jigou xiankuang ji yiyuan yiliao fuwuliang tongji. https://dep.mohw.gov.tw/DOS/cp-4931-54833-113.html (2020). Accessed 20 Aug 2020.

  8. Technology on Prototyping Ultimate Co., Ltd.: Rehabilitation exercise aid. Taiwan Patent No. M565021. https://twpat7.tipo.gov.tw/tipotwoc/tipotwekm?!!FR_M565021. (2018). Accessed 20 Aug 2020.

  9. Technology on Prototyping Ultimate Co., Ltd.:“TOPU” Continuous passive motion device (Non-sterile). Food and Drug Administration, Ministry of Health and Welfare. https://info.fda.gov.tw/MLMS/H0001D.aspx?Type=Lic&LicId=93007622 (2019). Accessed 20 Aug 2020.

  10. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  11. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernetics. SMC-15(1), 116–132. (1985)

  12. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  13. Li, T.-H.S., Tsai, S.-H.: T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 15(3), 494–506 (2007)

    Article  Google Scholar 

  14. Wang, W.-J., Lin, W.-W.: Decentralized PDC for large-scale T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 13(6), 779–786 (2007)

    Article  Google Scholar 

  15. Qiu, J., Feng, G., Gao, H.: Static-output-feedback H control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  16. Kiriakidis, K.: Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities. IEEE Trans. Fuzzy Syst. 9(2), 269–277 (2001)

    Article  Google Scholar 

  17. Zhang, H., Feng, G.: Stability analysis and H controller design of discrete-time fuzzy large-scale systems based on piecewise Lyapunov function. IEEE Trans. Syst. Man Cybernetics B 38(5), 1390–1401 (2008)

    Article  Google Scholar 

  18. Qiu, J., Feng, G., Gao, H.: Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements. IEEE Trans. Fuzzy Syst. 20(6), 1046–1062 (2012)

    Article  Google Scholar 

  19. Derakhshan, S.F., Fatehi, A., Sharabiany, M.G.: Nonmonotonic observer-base fuzzy controller designs for discrete time T-S fuzzy systems via LMI. IEEE Trans. Cybern. 44(12), 2557–2567 (2014)

    Article  Google Scholar 

  20. Chadli, M., Guerra, T.N.: LMI solution for robust static output feedback control of discrete Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 20(6), 1160–1165 (2012)

    Article  Google Scholar 

  21. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum-of-squares approach to modeling and control of nonlinear dynamic systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)

    Article  Google Scholar 

  22. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo, P. A.: SOSTOOLS: Sum of squares optimization toolbox for MATLAB, Version 3.03. California Institute of Technology, Pasadena. https://www.cds.caltech.edu/sostools/ (2018). Accessed 20 Aug 2020.

  23. Saebo.: The Brunnstrom Stages of Stroke Recovery. https://www.saebo.com/blog/the-stages-of-stroke-recovery/. (2018). Accessed 20 Aug 2020.

  24. Shah, S.K., Harasymiw, S.J., Stahl, P.L.: Stroke rehabilitation: outcome based on Brunnstrom recovery stages. Occup Ther J Res 6(6), 365–376 (1986)

    Article  Google Scholar 

  25. Hu, X.L., Tong, K.-Y., Song, R., Zheng, X.J., Leung, W.W.F.: A comparison between electromyography (EMG)-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil. Neural Repair. 23(8), 837–846 (2009)

    Article  Google Scholar 

  26. Norman, S.L., Dennison, M., Wolbrecht, E., Cramer, S.C., Srinivasan, R., Reinkensmeyer, D.J.: Movement anticipation and EEG: implications for BCI-contingent robot therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 911–919 (2016)

    Article  Google Scholar 

  27. Phang, C.R., Ko, L.W.: Global cortical network distinguishes motor imagination of left and right foot. IEEE Access. 8, 103734–103745 (2020)

    Article  Google Scholar 

  28. Ko, L.W., Lu, Y.C., Bustince, H., Chang, Y.C., Chang, Y., Fernandez, J., Wang, Y.K., Sanz, J.A., Dimuro, G.P., Lin, C.T.: Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface. IEEE Comput. Intell. Mag. 14(1), 96–106 (2019)

    Article  Google Scholar 

  29. Ko, L.W., Komarov, O., Lin, S.C.: Enhancing the hybrid BCI performance with the common frequency pattern in a dual-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1360–1369 (2019)

    Article  Google Scholar 

  30. Ko, L.W., Singanamalla, S.K.R., Komarov, O., Chen, C.C.: Development of single channel hybrid BCI System using motor imagery and SSVEP. J Healthcare Eng (2017). https://doi.org/10.1155/2017/3789386

    Article  Google Scholar 

  31. Pichiorri, F., et al.: Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77(5), 851–865 (2015)

    Article  Google Scholar 

  32. Ang, K.K., Guan, C., Phua, K.S., Wang, C., Zhou, L., Tang, K.Y., Joseph, G.J.E., Kuah, C.W.K., Chua, K.S.G.: Brain-computer interface-based robotic and effector system for wrist and hand rehabilitation results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng (2014). https://doi.org/10.3389/fneng.2014.00030

    Article  Google Scholar 

  33. Wikipedia: Programmable logic controller. https://en.wikipedia.org/wiki/Programmable_logic_controller (2020). Accessed 20 August 2020.

  34. Pawluszewicz, E., Bartosiewicz, Z.: Euler’s discretization and dynamic equivalence of nonlinear control systems. Nonlinear Control (2007). https://doi.org/10.1007/BFb0110301

    Article  MATH  Google Scholar 

  35. Tanaka, K., Tanaka, M., Chen, Y.-J., Wang, H.O.: A new sum-of-squares design framework for robust control of polynomial fuzzy systems with uncertainties. IEEE Trans. Fuzzy Syst. 24(1), 94–110 (2016)

    Article  Google Scholar 

  36. Chen, Y.-J., Tanaka, M., Tanaka, K., Ohtake, H., Wang, H.O.: Brief paper- Discrete polynomial fuzzy systems control. IET Control Theory Appl. 8(4), 288–296 (2014)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Zhang, H., Zhang, J., et al.: An SOS-based observer design for discrete-time polynomial fuzzy systems. Int. J. Fuzzy Syst. 17, 94–104 (2015)

    Article  MathSciNet  Google Scholar 

  38. Liu, Z., Bao, H., Xue, S., et al.: Fault estimator and diagnosis for generalized linear discrete-time system via self-constructing fuzzy UKF method. Int. J. Fuzzy Syst. 22, 232–241 (2020)

    Article  Google Scholar 

  39. Yu, G.-R., Huang, Y.-C., Cheng, C.-Y.: Sum-of-squres-based robust H controller design for discrete-time polynomial fuzzy systems. J. Franklin Inst. 355(1), 177–196 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Ministry of Economic Affair through the project of SBIR(1Z1080763), research grants from the Ministry of Health and Welfare (MOHW107-TDU-B-212-123006, MOHW108-TDU-B-212-133006), the Ministry of Science and Technology (MOST 105-2314-B-037-012-,109-2314-B-037-050-), the Kaohsiung Medical University Hospital ( KMUH105-5R66, KMUH107-7R83), the Kaohsiung Municipal Ta-Tung Hospital (kmtth-103-011), and the Regenerative Medicine and Cell Therapy Research Center in Kaohsiung Medical University (KMU-TC108A02-1)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiwen Hu or Chia-Hsin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Hu, H., Chen, CH. et al. Assistive Robot Design for Lower Limbs Rehabilitation Using Fuzzy Control. Int. J. Fuzzy Syst. 23, 2384–2395 (2021). https://doi.org/10.1007/s40815-021-01152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01152-4

Keywords

Navigation