Skip to main content
Log in

New MULTIMOORA and Pairwise Evaluation-Based MCDM Methods for Hotel Selection Based on the Projection Measure of Z-Numbers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The problem of hotel selection involves lots of uncertain information and multiple factors and can be identified as a multi-criteria decision-making problem. Aiming at the information description, measure, and fusion of hotel selection problems, this study develops multi-criteria decision-making methods based on Z-numbers and their projection measure and fusion techniques. To manage the three-dimensional structure of Z-numbers effectively, an optimization model is introduced to determine the potential probability distributions involved in Z-numbers. Then, the module, inner product, and cosine of Z-numbers are defined, and the projection measure of Z-numbers is presented by dealing with the three-dimensional structure of Z-numbers directly. Moreover, some Z-number Choquet integral projection operators are proposed for fusing Z-number evaluation information. Subsequently, an improved Multi-Objective Optimization by Ratio Analysis plus the Full Multiplicative Form method and an innovative pairwise evaluation-based multi-criteria decision-making method are developed. Based on the ideas of content-based recommendation and collaborative filtering recommendation, the above two methods are applied to solve hotel selection problems. And the sensitivity analysis and comparison discussion are conducted to demonstrate the applicability and validity of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gorgoglione, M., Panniello, U., Tuzhilin, A.: Recommendation strategies in personalization applications. Inf. Manag. 56(6), 103143 (2019)

    Google Scholar 

  2. Scholz, M., Dorner, V., Schryen, G., Benlian, A.: A configuration-based recommender system for supporting e-commerce decisions. Eur. J. Oper. Res. 259(1), 205–215 (2017)

    MATH  Google Scholar 

  3. Wang, J.Q., Zhang, X., Zhang, H.Y.: Hotel recommendation approach based on the online consumer reviews using interval neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 34(1), 381–394 (2018)

    Google Scholar 

  4. Yu, S.M., Wang, J., Wang, J.Q., Li, L.: A multi-criteria decision-making model for hotel selection with linguistic distribution assessments. Appl. Soft Comput. 67, 741–755 (2018)

    Google Scholar 

  5. Liang, X., Liu, P., Wang, Z.: Hotel selection utilizing online reviews: a novel decision support model based on sentiment analysis and DL-VIKOR method. Technol. Econ. Dev. Econ. 25(6), 1139–1161 (2019)

    Google Scholar 

  6. Sharma, H., Tandon, A., Kapur, P.K., Aggarwal, A.G.: Ranking hotels using aspect ratings based sentiment classification and interval-valued neutrosophic TOPSIS. Int. J. Syst. Assur. Eng. Manag. 10(5), 973–983 (2019)

    Google Scholar 

  7. Wang, L., Wang, X.K., Peng, J.J., Wang, J.Q.: The differences in hotel selection among various types of travellers: a comparative analysis with a useful bounded rationality behavioural decision support model. Tour. Manag. 76,103961 (2020)

    Google Scholar 

  8. Nie, R.X., Tian, Z.P., Wang, J.Q., Chin, K.S.: Hotel selection driven by online textual reviews: applying a semantic partitioned sentiment dictionary and evidence theory. Int. J. Hosp. Manag. 88, 102495 (2020)

    Google Scholar 

  9. Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)

    MATH  Google Scholar 

  10. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of discrete Z-numbers. Inf. Sci. 290, 134–155 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Liu, Q., Cui, H., Tian, Y., Kang, B.: On the negation of discrete Z-numbers. Inf. Sci. 537, 18–29 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Ezadi, S., Allahviranloo, T., Mohammadi, S.: Two new methods for ranking of Z-numbers based on sigmoid function and sign method. Int. J. Intell. Syst. 33(7), 1476–1487 (2018)

    Google Scholar 

  13. Kang, B., Deng, Y., Hewage, K., Sadiq, R.: A method of measuring uncertainty for Z-number. IEEE Trans. Fuzzy Syst. 27(4), 731–738 (2019)

    Google Scholar 

  14. Li, Y., Garg, H., Deng, Y.: A new uncertainty measure of discrete Z-numbers. Int. J. Fuzzy Syst. 22, 760–776 (2020)

    Google Scholar 

  15. Peng, H.G., Zhang, H.Y., Wang, J.Q., Li, L.: An uncertain Z-number multicriteria group decision-making method with cloud models. Inf. Sci. 501, 136–154 (2019)

    MathSciNet  Google Scholar 

  16. Massanet, S., Riera, J.V., Torrens, J.: A new approach to Zadeh’s Z-numbers: mixed-discrete Z-numbers. Inf. Fusion 53, 35–42 (2020)

    MATH  Google Scholar 

  17. Qiao, D., Wang, X.K., Wang, J.Q., Chen, K.: Cross entropy for discrete Z-numbers and its application in multi-criteria decision-making. Int. J. Fuzzy Syst. 21(6), 1786–1800 (2019)

    Google Scholar 

  18. Xian, S., Chai, J., Li, T., Huang, J.: A ranking model of Z-mixture-numbers based on the ideal degree and its application in multi-attribute decision making. Inf. Sci. 550, 145–165 (2021)

    MathSciNet  Google Scholar 

  19. Yaakob, A.M., Gegov, A.: Interactive TOPSIS based group decision-making methodology using Z-numbers. Int. J. Comput. Intell. Syst. 9(2), 311–324 (2016)

    Google Scholar 

  20. Chatterjee, K., Kar, S.: A multi-criteria decision-making for renewable energy selection using Z-numbers in uncertain environment. Technol. Econ. Dev. Econ. 24(2), 739–764 (2018)

    Google Scholar 

  21. Xian, S., Chai, J., Guo, H.: Z linguistic-induced ordered weighted averaging operator for multiple attribute group decision-making. Int. J. Intell. Syst. 34(2), 271–296 (2019)

    Google Scholar 

  22. Shen, K.W., Wang, J.Q.: Z-VIKOR method based on a new comprehensive weighted distance measure of Z-number and its application. IEEE Trans. Fuzzy Syst. 26(6), 3232–3245 (2018)

    Google Scholar 

  23. Jiang, W., Cao, Y., Deng, X.: A novel Z-network model based on Bayesian network and Z-number. IEEE Trans. Fuzzy Syst. 28(8), 1585–1599 (2020)

    Google Scholar 

  24. Abiyev, R.H., Akkaya, N., Gunsel, I.: Control of omnidirectional robot using Z-number-based fuzzy system. IEEE Trans. Syst. Man Cybern. Syst. 49(1), 238–252 (2019)

    Google Scholar 

  25. Jirofti, A., Najafi, A.A.: Portfolio selection using Z-number theory: two solution methodologies. Int. J. Fuzzy Syst. 20(8), 2484–2496 (2018)

    MathSciNet  Google Scholar 

  26. Aboutorab, H., Saberi, M., Asadabadi, M.R., Hussain, O., Chang, E.: ZBWM: the Z-number extension of Best Worst Method and its application for supplier development. Expert Syst. Appl. 107, 115–125 (2018)

    Google Scholar 

  27. Duan, C.Y., Liu, H.C., Zhang, L.J., Shi, H.: An extended alternative queuing method with linguistic Z-numbers and its application for green supplier selection and order allocation. Int. J. Fuzzy Syst. 21(8), 2510–2523 (2019)

    Google Scholar 

  28. Peng, H.G., Shen, K.W., He, S.S., Zhang, H.Y., Wang, J.Q.: Investment risk evaluation for new energy resources: an integrated decision support model based on regret theory and ELECTRE III. Energy Convers. Manag. 183, 332–348 (2019)

    Google Scholar 

  29. Hendiani, S., Bagherpour, M., Mahmoudi, A., Liao, H.: Z-number based earned value management (ZEVM): a novel pragmatic contribution towards a possibilistic cost-duration assessment. Comput. Ind. Eng. 143, 106430 (2020)

    Google Scholar 

  30. Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measure and Integrals. Physica-Verlag, New York (2000)

    MATH  Google Scholar 

  31. Merigo, J.M., Casanovas, M.: Decision-making with distance measures and induced aggregation operators. Comput. Ind. Eng. 60(1), 66–76 (2011)

    Google Scholar 

  32. Brauers, W.K.M., Zavadskas, E.K.: Project management by MULTIMOORA as an instrument for transition economies. Technol. Econ. Dev. Econ. 16(1), 5–24 (2010)

    Google Scholar 

  33. Hafezalkotob, A., Hafezalkotob, A., Liao, H., Herrera, F.: An overview of MULTIMOORA for multi-criteria decision-making: theory, developments, applications, and challenges. Inf. Fusion 51, 145–177 (2019)

    Google Scholar 

  34. Voxman, W.: Canonical representations of discrete fuzzy numbers. Fuzzy Sets Syst. 118(3), 457–466 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Klir, G.: Fuzzy Measure Theory. Plenum Press, New York (1992)

    MATH  Google Scholar 

  36. Peng, H.G., Wang, X.K., Zhang, H.Y., Wang, J.Q.: Group decision-making based on the aggregation of Z-numbers with Archimedean t-norms and t-conorms. Inf. Sci. 569, 264–286 (2021)

    Article  MathSciNet  Google Scholar 

  37. Yue, Z., Jia, Y.: A direct projection-based group decision-making methodology with crisp values and interval data. Soft Comput. 21(9), 2395–2405 (2017)

    MATH  Google Scholar 

  38. Zeng, S., Su, W.: Intuitionistic fuzzy ordered weighted distance operator. Knowl. Based Syst. 24(8), 1224–1232 (2011)

    Google Scholar 

  39. Xue, W., Xian, S., Dong, Y.: A novel intuitionistic fuzzy induced ordered weighted Euclidean distance operator and its application for group decision-making. Int. J. Intell. Syst. 32(7), 739–753 (2017)

    Google Scholar 

  40. Şahin, R., Küçük, G.D.: Group decision-making with simplified neutrosophic ordered weighted distance operator. Math. Methods Appl. Sci. 41(12), 4795–4809 (2018)

    MathSciNet  Google Scholar 

  41. Nilashi, M., Yadegaridehkordi, E., Ibrahim, O., Samad, S., Ahani, A., Sanzogni, L.: Analysis of travellers’ online reviews in social networking sites using fuzzy logic approach. Int. J. Fuzzy Syst. 21(5), 1367–1378 (2019)

    Google Scholar 

  42. Wei, J., He, J., Chen, K., Zhou, Y., Tang, Z.: Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69, 29–39 (2017)

    Google Scholar 

  43. Rutanen, K., Gómezherrero, G., Eriksson, S.L., Egiazarian, K.: A general definition of the O-notation for algorithm analysis. Int. J. Med. Microbiol. 303(2), 51–60 (2013)

    Google Scholar 

  44. Chen, T.: A fuzzy ubiquitous traveler clustering and hotel recommendation system by differentiating travelers’ decision-making behaviors. Appl. Soft Comput. 96, 106585 (2020)

    Google Scholar 

  45. Ray, B., Garain, A., Sarkar, R.: An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Appl. Soft Comput. 98, 106935 (2021)

    Google Scholar 

  46. Reddy, G.T., Reddy, M.P.K., Lakshmanna, K., Rajput, D.S., Kaluri, R., Srivastava, G.: Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evol. Intell. 13(2), 185–196 (2020)

    Google Scholar 

  47. Asghar, M.Z., Subhan, F., Ahmad, H., Khan, W.Z., Hakak, S., Gadekallu, T.R., Alazab, M.: Senti-eSystem: a sentiment-based eSystem-using hybridized fuzzy and deep neural network for measuring customer satisfaction. Softw. Pract. Exp. 51(3), 571–594 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable comments and suggestions to help improve the overall quality of this paper. This work was supported by the National Natural Science Foundation of China (No. 71871228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-kang Wang.

Appendix

Appendix

1.1 Proof of Theorem 1

Proof

(1) As described in Definition 3, \(a_{{ij}} \in R\), \(b_{{il}} \in [0,\;1]\), \(\mu (a_{{ij}} ) \in [0,\;1]\) and \(\mu (b_{{il}} ) \in [0,\;1]\). Moreover, \(1 - F_{{il}} (a_{{ij}} ) \in [0,\;1]\) is obvious. Then, \(0 \le Z_{1} \cdot Z_{2}\) and \(0 \le \left| {Z_{1} } \right|\left| {Z_{2} } \right|\) can be easily determined.

Moreover, according to the Cauchy–Schwarz inequality:

\((x_{1} y_{1} + x_{2} y_{2} + \cdots + x_{n} y_{n} )^{2} \le (x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2} )(y_{1}^{2} + y_{2}^{2} + \cdots + y_{n}^{2} )\),

the following inequality can be deduced:

$$\begin{aligned} & \left( {\sum\limits_{{j = 1}}^{n} {(a_{{1j}} \mu (a_{{1j}} ))(a_{{2j}} \mu (a_{{2j}} ))} + \sum\limits_{{l = 1}}^{m} {(b_{{1l}} \mu (b_{{1l}} ))(b_{{2l}} \mu (b_{{2l}} ))} + \sum\limits_{{j = 1}}^{n} {(a_{{1j}} (1 - F_{{1l}} (a_{{1j}} )))(a_{{2j}} (1 - F_{{2l}} (a_{{2j}} )))} } \right)^{2} \\ & \quad \le \left( {\sum\limits_{{j = 1}}^{n} {(a_{{1j}} \mu (a_{{1j}} ))^{2} } + \sum\limits_{{l = 1}}^{m} {(b_{{1l}} \mu (b_{{1l}} ))^{2} } + \sum\limits_{{j = 1}}^{n} {(a_{{1j}} (1 - F_{{1l}} (a_{{1j}} )))^{2} } } \right)\left( {\sum\limits_{{j = 1}}^{n} {(a_{{2j}} \mu (a_{{2j}} ))^{2} } + \sum\limits_{{l = 1}}^{m} {(b_{{2l}} \mu (b_{{2l}} ))^{2} } + \sum\limits_{{j = 1}}^{n} {(a_{{2j}} (1 - F_{{2l}} (a_{{2j}} )))^{2} } } \right). \\ \end{aligned}$$

Therefore, \(Z_{1} \cdot Z_{2} \le \left| {Z_{1} } \right|\left| {Z_{2} } \right|\) can be determined. According to the above obtained results, \(0 \le \text{Cos} (\alpha (Z_{1} ,\;Z_{2} )) \le 1\) can be proved. In addition, it is easy to prove that (2) and (3) in Theorem 1 are true.

1.2 Proof of Theorem 2

Proof

(1) As described in Theorem 1, \(0 \le \text{Cos} (\alpha (Z_{1} ,\;Z_{2} )) \le 1\). Therefore, \(0 \le P_{{Z_{2} }} (Z_{1} ) = \left| {Z_{1} } \right|\text{Cos} (\alpha (Z_{1} ,\;Z_{2} )) \le \left| {Z_{1} } \right|\) can be easily proved.

(2) If \(Z_{1} = Z_{2}\), then \(\text{Cos} (\alpha (Z_{1} ,\;Z_{2} )) = 1\) can be obtained from Theorem 1, and \(\left| {Z_{1} } \right| = \left| {Z_{2} } \right|\) can also be determined. Therefore, if \(Z_{1} = Z_{2}\), then \(P_{{Z_{2} }} (Z_{1} ) = \left| {Z_{1} } \right| = \left| {Z_{2} } \right| = P_{{Z_{1} }} (Z_{2} )\).

(3) If \(Z_{1} \le Z_{2}\), then \(a_{{1j}} \le a_{{2j}} ,\) \(\mu (a_{{1j}} ) \le \mu (a_{{2j}} ),\) \(b_{{1l}} \le b_{{2l}} ,\) \(\mu (b_{{1l}} ) \le \mu (b_{{2l}} )\) and \(F_{{1l}} (a_{{1j}} ) \ge F_{{2l}} (a_{{2j}} )\) can be obtained from Definition 6. Then, the following inequality can be deduced:

$$\begin{aligned} & Z_{1} \cdot Z_{3} = \sum\limits_{{j = 1}}^{n} {(a_{{1j}} \mu (a_{{1j}} ))(a_{{3j}} \mu (a_{{3j}} ))} + \sum\limits_{{l = 1}}^{m} {(b_{{1l}} \mu (b_{{1l}} ))(b_{{3l}} \mu (b_{{3l}} ))} + \sum\limits_{{j = 1}}^{n} {(a_{{1j}} (1 - F_{{1l}} (a_{{1j}} )))(a_{{3j}} (1 - F_{{3l}} (a_{{3j}} )))} \\ & \quad \le Z_{2} \cdot Z_{3} = \sum\limits_{{j = 1}}^{n} {(a_{{2j}} \mu (a_{{2j}} ))(a_{{3j}} \mu (a_{{3j}} ))} + \sum\limits_{{l = 1}}^{m} {(b_{{2l}} \mu (b_{{2l}} ))(b_{{3l}} \mu (b_{{3l}} ))} + \sum\limits_{{j = 1}}^{n} {(a_{{2j}} (1 - F_{{2l}} (a_{{2j}} )))(a_{{3j}} (1 - F_{{3l}} (a_{{3j}} )))} . \\ \end{aligned}$$

Therefore, \(P_{{Z_{3} }} (Z_{1} ) = \frac{{Z_{1} \cdot Z_{3} }}{{\left| {Z_{3} } \right|}} \le P_{{Z_{3} }} (Z_{2} ) = \frac{{Z_{2} \cdot Z_{3} }}{{\left| {Z_{3} } \right|}}\) can be proved.

1.3 Proof of Theorem 3

Proof

(1) According to Theorem 2, the following inequalities can be deduced:

\(0 \le P_{{Z_{2} }} (Z_{1} ) \le P_{{Z_{2} }} (Z_{1} ) + \left| {\left| {Z_{2} } \right| - P_{{Z_{2} }} (Z_{1} )} \right| \Rightarrow 0 \le \frac{{P_{{Z_{2} }} (Z_{1} )}}{{P_{{Z_{2} }} (Z_{1} ) + \left| {\left| {Z_{2} } \right| - P_{{Z_{2} }} (Z_{1} )} \right|}} \le 1 \Rightarrow 0 \le {\text{NP}}_{{Z_{2} }} (Z_{1} ) \le 1\).

(2) If \(Z_{1} = Z_{2}\), then \(P_{{Z_{2} }} (Z_{1} ) = \left| {Z_{1} } \right| = \left| {Z_{2} } \right|\) can be obtained from Theorem 2. Therefore, the following equalities can be deduced:

\({\text{NP}}_{{Z_{2} }} (Z_{1} ) = \frac{{P_{{Z_{2} }} (Z_{1} )}}{{P_{{Z_{2} }} (Z_{1} ) + \left| {\left| {Z_{2} } \right| - P_{{Z_{2} }} (Z_{1} )} \right|}} = \frac{{P_{{Z_{2} }} (Z_{1} )}}{{P_{{Z_{2} }} (Z_{1} ) + \left| {\left| {Z_{2} } \right| - \left| {Z_{2} } \right|} \right|}} = \frac{{P_{{Z_{2} }} (Z_{1} )}}{{P_{{Z_{2} }} (Z_{1} )}} = 1\).

(3) If \(Z_{1} \le Z_{2} \le Z_{3}\), then \(a_{{1j}} \le a_{{2j}} \le a_{{3j}} ,\) \(\mu (a_{{1j}} ) \le \mu (a_{{2j}} ) \le \mu (a_{{3j}} ),\) \(b_{{1l}} \le b_{{2l}} \le b_{{3l}} ,\) \(\mu (b_{{1l}} ) \le \mu (b_{{2l}} ) \le \mu (b_{{3l}} )\) and \(F_{{1l}} (a_{{1j}} ) \ge F_{{2l}} (a_{{2j}} ) \ge F_{{3l}} (a_{{3j}} )\) can be obtained from Definition 6. Therefore, \(\left| {Z_{1} } \right| \le \left| {Z_{2} } \right| \le \left| {Z_{3} } \right|\) can be determined. Then, based on Theorem 2, \(0 \le P_{{Z_{3} }} (Z_{1} ) \le \left| {Z_{1} } \right| \le \left| {Z_{3} } \right|\) and \(0 \le P_{{Z_{3} }} (Z_{2} ) \le \left| {Z_{2} } \right| \le \left| {Z_{3} } \right|\) can be obtained. Hence, there are

$${\text{NP}}_{{Z_{3} }} (Z_{1} ) = \frac{{P_{{Z_{3} }} (Z_{1} )}}{{P_{{Z_{3} }} (Z_{1} ) + \left| {Z_{3} } \right| - P_{{Z_{3} }} (Z_{1} )}} = \frac{{P_{{Z_{3} }} (Z_{1} )}}{{\left| {Z_{3} } \right|}}\quad {\text{and}}\quad {\text{NP}}_{{Z_{3} }} (Z_{2} ) = \frac{{P_{{Z_{3} }} (Z_{2} )}}{{P_{{Z_{3} }} (Z_{2} ) + \left| {Z_{3} } \right| - P_{{Z_{3} }} (Z_{2} )}} = \frac{{P_{{Z_{3} }} (Z_{2} )}}{{\left| {Z_{3} } \right|}}.$$

Moreover, when \(Z_{1} \le Z_{2}\), \(P_{{Z_{3} }} (Z_{1} ) \le P_{{Z_{3} }} (Z_{2} )\) can be obtained from Theorem 2. Therefore, \({\text{NP}}_{{Z_{3} }} (Z_{1} ) = \frac{{P_{{Z_{3} }} (Z_{1} )}}{{\left| {Z_{3} } \right|}} \le {\text{NP}}_{{Z_{3} }} (Z_{2} ) = \frac{{P_{{Z_{3} }} (Z_{2} )}}{{\left| {Z_{3} } \right|}}\) can be proved.

1.4 Proof of Theorem 7

Proof

If \({\text{NP}}_{{Z^{\prime}_{1} }} (Z_{1} ) = {\text{NP}}_{{Z^{\prime}_{2} }} (Z_{2} ) = \cdots = {\text{NP}}_{{Z^{\prime}_{s} }} (Z_{s} )\), then \({\text{NP}}_{{Z^{\prime}_{1} }}^{{(1)}} (Z_{1} ) = {\text{NP}}_{{Z^{\prime}_{2} }}^{{(2)}} (Z_{2} ) = \cdots = {\text{NP}}_{{Z^{\prime}_{s} }}^{{(s)}} (Z_{s} ) = {\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )\). Therefore, there are

$$\begin{aligned} & {\text{GZCIPA}}((Z_{1} ,\;Z^{\prime}_{1} ),\;(Z_{2} ,\;Z^{\prime}_{2} ), \ldots ,(Z_{s} ,\;Z^{\prime}_{s} )) \\ & \quad = \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))\left( {{\text{NP}}_{{Z^{\prime}_{i} }}^{{(i)}} (Z_{i} )} \right)^{\lambda } } } \right)^{{\frac{1}{\lambda }}} = \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))\left( {{\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )} \right)^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \\ & \quad = \left( {((\pi (C_{{(1)}} ) - \pi (C_{{(2)}} )) + (\pi (C_{{(2)}} ) - \pi (C_{{(3)}} )) + \cdots + (\pi (C_{{(n)}} ) - \pi (C_{{(n + 1)}} )))\left( {{\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )} \right)^{\lambda } } \right)^{{\frac{1}{\lambda }}} \\ & \quad = \left( {(\pi (C_{{(1)}} ) - \pi (C_{{(n + 1)}} ))\left( {{\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )} \right)^{\lambda } } \right)^{{\frac{1}{\lambda }}} = \left( {({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} ))^{\lambda } } \right)^{{\frac{1}{\lambda }}} = {\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} ). \\ \end{aligned}$$

1.5 Proof of Theorem 8

Proof

If \(Z_{i} \le Z^{\prime}_{i} \le Z^{\prime\prime}_{i}\), then \({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ) \le {\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} )\) can be obtained from Theorem 3. Then, the following inequalities can be deduced:

$$\begin{aligned} & {\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ) \le {\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} ) \Rightarrow ({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ))^{\lambda } \le ({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} ))^{\lambda } \\ & \quad \Rightarrow (\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ))^{\lambda } \le (\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} ))^{\lambda } \\ & \quad \Rightarrow \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \le \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} . \\ \end{aligned}$$

Since the fuzzy measure \(\pi\) is independent of the location of variables, there are

$$\begin{aligned} & (\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ))^{\lambda } = (\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }}^{{(i)}} (Z_{i} ))^{\lambda } , \\ & (\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} ))^{\lambda } = (\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }}^{{(i)}} (Z^{\prime}_{i} ))^{\lambda } . \\ \end{aligned}$$

Therefore, the following inequalities can be deduced:

$$\begin{aligned} & \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \le \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{i} ) - \pi (C_{{i + 1}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }} (Z^{\prime}_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \\ & \quad \Rightarrow \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }}^{{(i)}} (Z_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \le \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))({\text{NP}}_{{Z^{\prime\prime}_{i} }}^{{(i)}} (Z^{\prime}_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \\ & \quad \Rightarrow {\text{GZCIPA}}((Z_{1} ,\;Z^{\prime\prime}_{1} ),\;(Z_{2} ,\;Z^{\prime\prime}_{2} ), \ldots ,(Z_{s} ,\;Z^{\prime\prime}_{s} )) \le {\text{GZCIPA}}((Z^{\prime}_{1} ,\;Z^{\prime\prime}_{1} ),\;(Z^{\prime}_{2} ,\;Z^{\prime\prime}_{2} ), \ldots ,(Z^{\prime}_{s} ,\;Z^{\prime\prime}_{s} )). \\ \end{aligned}$$

1.6 Proof of Theorem 9

Proof

Since \(\mathop {\min }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )) \le {\text{NP}}_{{Z^{\prime}_{i} }}^{{(i)}} (Z_{i} ) \le \mathop {\max }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} ))\), the following inequalities can be deduced:

$$\begin{aligned} & \mathop {\min }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )) \le {\text{NP}}_{{Z^{\prime}_{i} }}^{{(i)}} (Z_{i} ) \Rightarrow (\mathop {\min }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )))^{\lambda } \le ({\text{NP}}_{{Z^{\prime}_{i} }}^{{(i)}} (Z_{i} ))^{\lambda } \\ & \quad \Rightarrow (\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))(\mathop {\min }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )))^{\lambda } \le (\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))({\text{NP}}_{{Z^{\prime}_{i} }}^{{(i)}} (Z_{i} ))^{\lambda } \\ & \quad \Rightarrow \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))(\mathop {\min }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \le \left( {\sum\limits_{{i = 1}}^{s} {(\pi (C_{{(i)}} ) - \pi (C_{{(i + 1)}} ))({\text{NP}}_{{Z^{\prime}_{i} }}^{{(i)}} (Z_{i} ))^{\lambda } } } \right)^{{\frac{1}{\lambda }}} \\ & \quad \Rightarrow \mathop {\min }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} )) \le {\text{GZCIPA}}((Z_{1} ,\;Z^{\prime}_{1} ),\;(Z_{2} ,\;Z^{\prime}_{2} ), \ldots ,(Z_{s} ,\;Z^{\prime}_{s} )). \\ \end{aligned}$$

Similarly, \({\text{GZCIPA}}((Z_{1} ,\;Z^{\prime}_{1} ),\;(Z_{2} ,\;Z^{\prime}_{2} ), \ldots ,(Z_{s} ,\;Z^{\prime}_{s} )) \le \mathop {\max }\limits_{i} ({\text{NP}}_{{Z^{\prime}_{i} }} (Z_{i} ))\) can be deduced. Therefore, Theorem 9 is true.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Hg., Wang, Xk. & Wang, Jq. New MULTIMOORA and Pairwise Evaluation-Based MCDM Methods for Hotel Selection Based on the Projection Measure of Z-Numbers. Int. J. Fuzzy Syst. 24, 371–390 (2022). https://doi.org/10.1007/s40815-021-01141-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01141-7

Keywords

Navigation