Skip to main content
Log in

Robust Model-Free Adaptive Interval Type-2 Fuzzy Sliding Mode Control for PEMFC System Using Disturbance Observer

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a novel robust model-free adaptive interval type-2 fuzzy sliding mode control (MF-AIT2FSMC) for the proton exchange membrane fuel cell (PEMFC) system using nonlinear disturbance observer. The main control objective is to adjust the oxygen stoichiometry at its reference trajectory under load disturbances and parameter uncertainties, to avert the oxygen starvation problem and to obtain maximum net power. The referred MF-AIT2FSMC control strategy is composed of three parts: first, a nonlinear disturbance observer is proposed to estimate both oxygen and nitrogen partial pressures which are considered as unmeasurable variables. Second, a nonlinear disturbance observer-based intelligent proportional-integral (NDBO-iPI) control is derived, whereas the NDBO is used to estimate the unmodeled system dynamics via the knowledge of input and output signals. Third, adaptive interval type-2 fuzzy nonsingular fast terminal sliding mode control is inserted to NDBO-iPI control to compensate the NDBO estimation error, enhance the control performance and ensure the global controlled system stability. Furthermore, the entire controlled system stability is verified via the Lyapunov approach. Finally, the corresponding numerical simulation on the PEMFC system is obtained to demonstrate the effectiveness and efficiency of the proposed MF-AIT2FSMC technique by comparing with the NDBO-iPI and standard PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, C., Nehrir, M.H., Shaw, S.R.: Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans. Energy Convers. 20(2), 442–451 (2005)

    Google Scholar 

  2. Abbaker, O.: Control of wind turbine for variable speed based on fuzzy-PID controller. J. Eng. Comput. Sci. JECS 18(1), 40–51 (2017)

    Google Scholar 

  3. Zhidong, Q., Sun, Q., Ge, W., He, Y.: Nonlinear modeling of PEMFC based on fractional order subspace identification. Asian J. Control (2019). https://doi.org/10.1002/asjc.2092

    Article  Google Scholar 

  4. Chen, Q., Gao, L., Dougal, R.A., Quan, S.: Multiple model predictive control for a hybrid proton exchange membrane fuel cell system. J. Power Sources 191(2), 473–482 (2009)

    Google Scholar 

  5. Baroud, Z., Benmiloud, M., Benalia, A., Ocampo-Martinez, C.: Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems. Int. J. Hydrog. Energy 42(15), 10435–10447 (2017)

    Google Scholar 

  6. Motapon, S.N., Dessaint, L.A., Al-Haddad, K.: A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans. Ind. Electron. 61(3), 1320–1334 (2014)

    Google Scholar 

  7. Cheng, S., Xu, L., Li, J., Fang, C., Hu, J., Ouyang, M.: Development of a PEM fuel cell city bus with a hierarchical control system. Energies 9(6), 417 (2016)

    Google Scholar 

  8. Garc´ıa, P., Torreglosa, J.P., Fernández, L.M., Jurado, F.: Viability study of a FC-battery-SC tramway controlled by equivalent consumption minimization strategy. Int. J. Hydrog. Energy 37(11), 9368–9382 (2012)

    Google Scholar 

  9. Ou, K., Wang, Y.X., Li, Z.Z., Shen, Y.D., Xuan, D.J.: Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system. Int. J. Hydrog. Energy 40(35), 11686–11695 (2015)

    Google Scholar 

  10. Ziogou, C., Papadopoulou, S., Georgiadis, M.C., Voutetakis, S.: On-line nonlinear model predictive control of a PEM fuel cell system. J. Process Control 23(4), 483–492 (2013)

    Google Scholar 

  11. Rodatz, P., Paganelli, G., Guzzella, L.: Optimizing air supply control of a PEM fuel cell system. In: Proceedings of the 2003 American Control Conference, Denver, CO, USA, 2003, pp. 2043–2048. IEEE

  12. Rakhtala, S.M., Noei, A.R., Ghaderi, R., Usai, E.: Control of oxygen excess ratio in a PEM fuel cell system usinghigh-order sliding-mode controller and observer. Turk. J. Electr. Eng. Comput. Sci. 23(1), 255–278 (2015)

    Article  Google Scholar 

  13. Aliasghary, M.: Control of PEM fuel cell systems using interval type-2 fuzzy PID approach. Fuel Cells 18(4), 449–456 (2018)

    Article  Google Scholar 

  14. Ahmed, S., Wang, H.P., Tian, Y.: Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. J. Vib. Control 22(24), 5273–5290 (2018)

    Article  MathSciNet  Google Scholar 

  15. Park, G., Gajic, Z.: A simple sliding mode controller of a fifth-order nonlinear pem fuel cell model. IEEE Trans. Energy Convers. 29(1), 65–71 (2014)

    Article  Google Scholar 

  16. Laghrouche, S., Harmouche, M., Ahmed, F.S., Chitour, Y.: Control of PEMFC air-feed system using Lyapunovbased robust and adaptive higher order sliding mode control. IEEE Trans. Control Syst. Technol. 23(4), 1594–1601 (2015)

    Article  Google Scholar 

  17. Li, C.H., Sun, Z.H., Wang, Y.L., Wu, X.D.: Fuzzy sliding mode control of air supply flow of a PEM fuel cell system. Unifying Electrical Engineering and Electronics Engineering, pp. 933–942. New York, Springer (2014)

    Chapter  Google Scholar 

  18. Zakaria, B., Noureddine, G., Atallah, B., Carlos, O.: Algebraic observer-based output-feedback controller design for a PEM fuel cell air-supply subsystem. IET Renew. Power Gener. 12(14), 1714–1721 (2018)

    Article  Google Scholar 

  19. Deng, H., Li, Q., Chen, W.: Research on HOSM observer for oxygen excess ratio estimation of PEMFC system. Proc. CSEE 37(17), 5058–5068 (2017)

    Google Scholar 

  20. Thawornkuno, C., Panjapornpon, C.: Estimation of water content in PEM fuel cell. Chiang Mai J. Sci. 35(1), 212–220 (2008)

    Google Scholar 

  21. Pukrushpan, J., Stefanopoulou, A., Peng, H.: Control of fuel cell breathing. IEEE Control Syst. 24(2), 30–46 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Vepa, R.: Adaptive state estimation of a PEM fuel cell. IEEE Trans. Energy Convers. 27(2), 457–467 (2012)

    Google Scholar 

  23. Baroud, Z., Gazzam, N., Benalia, A., Ocampo-Martinez, C.: Algebraic Observer Design for PEM Fuel Cell System. In: 2016 8th International Conference on Modelling Identification and Control (ICMIC), Algiers, Algeria 2016, pp. 966–970. IEEE

  24. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Google Scholar 

  25. Fliess, M., Join, C.: Model free control and intelligent PID controllers: Towards a possible trivialization of nonlinear control. IFAC Proc. 42, 10 (2009)

    Google Scholar 

  26. Fliess, M., Join, C.: Intelligent PID controllers. In: 16th Mediterrean conference on control and automation, Ajaccio, France 2008, pp. 326–331. IEEE

  27. Chong, Y., Liu, J., Wang, S., Chen, X., Luo, Q., Wang, Y., Li, M., Han, Y.: Adaptive sliding mode control for a class of second-order output tracking systems with uncertain perturbations. In: 2019 Chinese Automation Congress (CAC), Hangzhou, China, China 2019, pp. 2411–2416. IEEE

  28. Yan, J., Wang, H., Huang, S., Lan, Y.: Load disturbance observer-based complementary sliding mode control for pmsm of the mine traction electric locomotive. Int. J. Fuzzy Syst. 21(4), 1051–1058 (2019)

    MathSciNet  Google Scholar 

  29. Haroun, A.G., Li, Y.Y.: A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics. ISA Trans. 71, 364–379 (2017)

    Google Scholar 

  30. Wang, H.P., Tian, Y., Ni, S., Christov, N.: Intelligent proportional trajectory tracking controllers: Using ultra-local model and time delay estimation techniques. In: 27th Chinese control and decision conference (CCDC), Qingdao, China 2015, pp. 430–435. IEEE

  31. Li, S., Wang, H.P., Tian, Y., Aitouch, A., Klein, J.: Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control. ISA Trans. 64, 431–439 (2016)

    Google Scholar 

  32. Haroun, A.G., Li, Y.Y.: Ant lion optimized hybrid intelligent PID-based sliding mode controller for frequency regulation of interconnected multi-area power systems. Trans. Inst. Measur. Control 42(9), 1594–1617 (2020)

    Google Scholar 

  33. Wang, H.P., Li, S., Tian, Y., Aitouche, A.: Intelligent proportional differential neural network control for unknown nonlinear system. Stud. Inf. Control 25(4), 445–452 (2016)

    Google Scholar 

  34. Han, S., Wang, H.P., Tian, Y.: Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton. Adv. Eng. Softw. 119, 38–47 (2018)

    Google Scholar 

  35. Abbaker, A.O., Wang, H.P., Tian, Y.: Voltage control of solid oxide fuel cell power plant based on intelligent proportional integral-adaptive sliding mode control with anti-windup compensator. Trans. Inst. Measur. Control 42(1), 116–130 (2020)

    Article  Google Scholar 

  36. Zhang, X., Wang, H.P., Tian, Y., Peyrodie, L., Wang, X.: Model-free based neural network control with time-delay estimation for lower extremity exoskeleton. Neurocomputing 272, 178–188 (2018)

    Article  Google Scholar 

  37. Mustafa, G.I., Wang, H.P., Tian, Y.: Model-free adaptive fuzzy logic control for a half-car active suspension system. Stud. Inf. Control 28(1), 13–24 (2019)

    Article  Google Scholar 

  38. Wang, H.P., Mustafa, G.I., Tian, Y.: Model-free fractional order sliding mode control for an active vehicle suspension system. Adv. Eng. Softw. 115(1), 452–461 (2018)

    Article  Google Scholar 

  39. Abouaissa, H., Fliess, M., Join, C.: On ramp metering: towards a better understanding of ALINEA via model-free control. Int. J. Control 90(5), 1018–1026 (2017)

    Article  MathSciNet  Google Scholar 

  40. Al-Younes, Y., Drak, A., Noura, H., Rabhi, A., El-Hajjaji, A.: Model-free control of a quadrotor vehicle. In: 2014 International conference on unmanned aircraft systems (ICUAS), Orlando, FL, USA 2014, pp. 1126–1131. IEEE

  41. Rathi, K.M., Prabha, R.N.: Interval type-2 fuzzy logic controller-based multi-level shunt active power line conditioner for harmonic mitigation. Int. J. Fuzzy Syst. 21, 104–114 (2019)

    MathSciNet  Google Scholar 

  42. Zeghlache, S., Benslimane, T., Amardjia, N., Bouguerra, A.: Interval type-2 fuzzy sliding mode controller based on nonlinear observer for a 3-DOF helicopter with uncertainties. Int. J. Fuzzy Syst. 19, 1444–1463 (2017)

    MathSciNet  Google Scholar 

  43. Tafti, B.E.F., Teshnehlab, M., Khanesar, M.A.: Recurrent interval type-2 fuzzy wavelet neural network with stable learning algorithm: application to model-based predictive control. Int. J. Fuzzy Syst. 22, 351–367 (2020)

    MathSciNet  Google Scholar 

  44. Mo, H., Zhao, X., Wang, F.Y.: Application of interval type-2 fuzzy sets in unmanned vehicle visual guidance. Int. J. Fuzzy Syst. 21(6), 1661–1668 (2019)

    Google Scholar 

  45. Saif, A.W.A., Mudasar, M., Mysorewala, M., Elshafei, M.: Observer-based interval type-2 fuzzy logic control for nonlinear networked control systems with delays. Int. J. Fuzzy Syst. 22(2), 380–399 (2020)

    MathSciNet  Google Scholar 

  46. Suh, K.W.: Modeling, analysis and control of fuel cell hybrid power systems. Ph.D thesis, Department of Mechanical Engineering, University of Michigan (2006)

  47. Matraji, I., Laghrouche, S., Jemei, S., Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)

    Google Scholar 

  48. Gruber, J.K., Bordons, C., Dorado, F.:: Nonlinear control of the air feed of a fuel cell. In: 2008 American Control Conference, Seattle, WA, USA 2008, pp. 1121–1126. IEEE

  49. Tian, Y., Wang, H., Wu, Q., Hu, M., Christov, N.: Nonsingular fast terminal sliding mode based model-free control: application to glycemia regulation systems. Inf. Technol. Control 48(4), 602–617 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61773212) and by International Science and Technology Cooperation Program of China (2015DFA01710)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoping Wang.

Appendix

Appendix

See Table 3.

Table 3 Constants of the PEMFC air supply system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer Abbaker, A.M., Wang, H. & Tian, Y. Robust Model-Free Adaptive Interval Type-2 Fuzzy Sliding Mode Control for PEMFC System Using Disturbance Observer. Int. J. Fuzzy Syst. 22, 2188–2203 (2020). https://doi.org/10.1007/s40815-020-00916-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00916-8

Keywords

Navigation