Skip to main content

Advertisement

Log in

Machine learning-driven modeling for soil organic carbon estimation from multispectral drone imaging: a case study in Corvera, Murcia (Spain)

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Analyzing the spatial variability of soil organic carbon (SOC) content is crucial for evaluating soil quality and associated factors, including structural stability, nutrient cycling, biological activity, and soil aeration. The precise mapping of SOC distribution is vital for gaining scientific insights and promoting sustainable land management. This study, carried out in the semi-arid ecosystem of Corvera, Murcia, Spain, introduces an innovative modeling approach that combines drone-based multispectral sensor data with laboratory measurements to estimate SOC content. The hybrid model incorporates various index variables, including the Differential Vegetation Index (DVI), Enhanced Vegetation Index (EVI), Soil Adjusted Optimized Vegetation Index (OSAVI), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI). To validate the model, 76 soil samples were collected at a depth of 30 cm, and SOC content has been quantified using the Walkley–Black method, where 80% of the samples are reserved for model training, and 21 auxiliary predictors are integrated. The primary objectives of this study involve assessing the predictive performance of machine learning algorithms, including artificial neural networks (ANN), support vector machines (SVM), random forests (RF), and multiple linear regression (MLR). The focus is on evaluating the effectiveness of these algorithms in predicting Soil Organic Carbon (SOC) content. The results indicate that the random forests (RF) algorithm outperforms others, demonstrating high efficacy (R2 = 0.97, RMSE = 1.41, RPIQ = 2.48). In addition to algorithm evaluation, SOC mapping results for the semi-arid Corvera region reveal distinctive spatial patterns. Central areas exhibit higher SOC content, while lower levels are found along the periphery. This spatial variation provides a nuanced understanding of SOC distribution, which is critical for effective soil management and environmental planning in the studied region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data are included in the present study.

References

  • Abraham S, Huynh C, Vu H (2019) Classification of soils into hydrologic groups using machine learning. Data (basel) 5(1):2

    Google Scholar 

  • Allawai MF, Ahmed BA (2020) Using remote sensing and GIS in measuring vegetation cover change from satellite imagery in Mosul City North of Iraq. IOP Conf Ser: Mater Sci Eng. https://doi.org/10.1088/1757-899X/757/1/012062

    Article  Google Scholar 

  • Ballabio C, Panagos P, Montanarella L (2014) Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. In: Second International Conference on Remote Sensing and Geoinformation of the Environment 92290F. https://doi.org/10.1117/12.2066406

  • Breiman L (2001) Random forests. Vol. 45

  • Calvo DA, Calvo LE, Sabarís CF, Costa GJM, Mosquera MN, Vázquez FM, Arbestain CM, Vázquez GN (2015) Soil organic carbon in northern spain (Galicia, asturias, cantabria and país vasco). Span J Soil Sci 5(1):41–53. https://doi.org/10.3232/SJSS.2015.V5.N1.04

    Article  Google Scholar 

  • Chen F, Feng P, Harrison MT, Wang B, Liu K, Zhang C, Liu K, Zhang C, Hu K (2023) Cropland carbon stocks driven by soil characteristics, rainfall and elevation. Sci Total Environ 1:862. https://doi.org/10.1016/j.scitotenv.2022.160602

    Article  CAS  Google Scholar 

  • Choudhary A, Fatima S, Panigrahi BK (2022) State of the art technologies in fault diagnosis of electric vehicles: a component-based review. IEEE Trans Transport Electrif 9:2324–2347

    Article  Google Scholar 

  • Cowie AL, Berndes G, Bentsen NS, Brandão M, Cherubini F, Egnell G et al (2021) Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy 13(8):1210–1231

    Article  Google Scholar 

  • Dahy B, Issa S, Ksiksi T, Saleous N (2020) Geospatial technology methods for carbon stock assessment: a comprehensive review. IOP Conf Ser: Earth Environ Sci. 540:12036

    Article  Google Scholar 

  • Dat PM, Mau ND, Loan B TT, Huy DTN (2020) Comparative China Corporate governance standards after financial crisis, corporate scandals and manipulation. J. Secur. Sustain. Issues 9(3)

  • De Almeida CT, Galvão LS, de Aragão LE, Ometto JPHB, Jacon AD, de Pereira FRS, Sato LY, Lopes AP, de Graça PMLA, de Silva CVJ, Ferreira-Ferreira J, Longo M (2019) Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens Environ 232:111323. https://doi.org/10.1016/J.RSE.2019.111323

    Article  Google Scholar 

  • Emde D, Hannam KD, Midwood AJ, Jones MD (2022) Estimating mineral-associated organic carbon deficits in soils of the Okanagan valley: a regional study with broader implications. Front Soil Sci. https://doi.org/10.3389/fsoil.2022.812249

    Article  Google Scholar 

  • Fathololoumi S, Vaezi AR, Alavipanah SK, Ghorbani A, SauretteD BA (2020) Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: a case study in Iran. Sci Total Environ 721:137703

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gholizadeh A, Žižala D, Saberioon M, Borůvka L (2018) Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens Environ 218:89–103. https://doi.org/10.1016/j.rse.2018.09.015

    Article  ADS  Google Scholar 

  • Gómez C, Alejandro P, Hermosilla T, Montes F, Pascual C, Ruiz Fernández LÁ, Alvarez-Taboada F, Tanase MA, Valbuena R (2019) Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. For Syst 28(1):1–33

    Article  Google Scholar 

  • Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S, Beaumelle L, Rillig MC, Maestre FT, Delgado-Baquerizo M (2020) Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 11(1):3870

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hair J, Joseph F, Hult G, Tomas M, Ringle CM, Sarstedt M, Danks NP, Ray S (2021) Classroom companion: business partial least squares structural equation modeling (PLS-SEM) Using R AAWorkbook. Springer. https://doi.org/10.1007/978-3-030-80519-7

    Book  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  ADS  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. www.elsevier.com/locate/rse

  • Jain J, Mitran T (2020) A geospatial approach to assess climate change impact on soil organic carbon in a semi-arid region Tropical. Ecology 61(3):412–428

    CAS  Google Scholar 

  • Jiang J, Johansen K, Tu YH, McCabe MF (2022) Multi-sensor and multi-platform consistency and interoperability between UAV, Planet CubeSat, Sentinel-2, and Landsat reflectance data. Gisci Remote Sens 59(1):936–958

    Article  Google Scholar 

  • Junting Y, Xiaosong L, Bo W, Junjun W, Bin S, Changzhen Y, Zhihai G, Zucca C, Gupta S, Ruescas AB (2021) High spatial resolution topsoil organic matter content mapping across desertified land in Northern China. Front Environ Sci 9:25. https://doi.org/10.3389/fenvs.2021.668912

    Article  Google Scholar 

  • Kim JH, Jobbágy EG, Richter DD, Trumbore SE, Jackson RB (2020) Agricultural acceleration of soil carbonate weathering. Glob Change Biol 26(10):5988–6002

    Article  ADS  Google Scholar 

  • Laamrani A, Berg AA, Voroney P, Feilhauer H, Blackburn L, March M, Dao PD, He Y, Martin RC (2019) Ensemble identification of spectral bands related to soil organic carbon levels over an agricultural field in Southern Ontario Canada. Remote Sens 11(11):1298. https://doi.org/10.3390/rs11111298

    Article  ADS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  ADS  CAS  Google Scholar 

  • Lorenz K, Lal R (2022) Soil organic carbon sequestration in terrestrial biomes of the United States. Springer

    Book  Google Scholar 

  • Mana AA, Allouhi A, Hamrani A, Jamil A, Ouazzani K, Barrahmoune A, Daffa D (2022) Survey review on artificial intelligence and embedded systems for agriculture safety: a proposed IoT Agro-meteorology system for local farmers in Morocco. Smart embedded systems and applications. CRC Press, pp 211–242

    Google Scholar 

  • Matinfar HR, Maghsodi Z, Mousavi SR, Rahmani A (2021) Evaluation and prediction of topsoil organic carbon using machine learning and hybrid models at a field-scale. CATENA. https://doi.org/10.1016/j.catena.2021.105258

    Article  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79(4):523–555

    Article  Google Scholar 

  • Meng X, Bao Y, Liu J, Liu H, Zhang X, Zhang Y, Wang P, Tang H, Kong F (2020) Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int J Appl Earth Obs Geoinform. https://doi.org/10.1016/j.jag.2020.102111

    Article  Google Scholar 

  • Nguyen HH, Lan TTN, Nghia NH, Linh DVK, Bohm S, Premnath CFS (2021) Biomass and carbon stock estimation of mangrove forests using remote sensing and field investigation-based data on Hai Phong coast. Vietnam J Sci Technol 59(5):560–579

    Article  Google Scholar 

  • Nguyen TT, Pham TD, Nguyen CT, Delfos J, Archibald R, Dang KB, Hoang NB, Guo W, Ngo HH (2022) A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci Total Environ 804:150187. https://doi.org/10.1016/j.scitotenv.2021.150187

    Article  ADS  CAS  PubMed  Google Scholar 

  • Novianti F, Ulinnuha N, Hafiyusholeh M, Arianto A (2022) Prediksi Penggunaan Bahan Bakar pada PLTGU menggunakan metode support vector regression (SVR). Techno.com 21(2):249–255

    Article  Google Scholar 

  • Pande CB, Kadam SA, Jayaraman R, Gorantiwar S, Shinde M (2022) Prediction of soil chemical properties using multispectral satellite images and wavelet transforms methods. J Saudi Soc Agric Sci 21(1):21–28

    Google Scholar 

  • Park E, Loc Ho H, Van Binh D, Kantoush S, Poh D, Alcantara E, Try S, Lin YN (2022) Impacts of agricultural expansion on floodplain water and sediment budgets in the Mekong River. J Hydrol. https://doi.org/10.1016/j.jhydrol.2021.127296

    Article  Google Scholar 

  • Prăvălie R (2021) Exploring the multiple land degradation pathways across the planet. Earth Sci Rev 220:103689. https://doi.org/10.1016/j.earscirev.2021.103689

    Article  Google Scholar 

  • Reda R, Saffaj T, Ilham B, Saidi O, Issam K, Brahim L, El Hadrami EM (2019) A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2019.103873

    Article  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ. https://doi.org/10.1016/0034-4257(95)00186-7

    Article  Google Scholar 

  • Roslim MHM, Juraimi AS, Cheya NN, Sulaiman N, Manaf MNHA, Ramli Z, Motmainna M (2021) Using remote sensing and an unmanned aerial system for weed management in agricultural crops: a review. Agronomy 11(9):109

    Article  Google Scholar 

  • Satdichanh M, Dossa GGO, Yan K, Tomlinson KW, Barton KE, Crow SE, Winowiecki L, Vågen T, Xu J, Harrison RD (2023) Drivers of soil organic carbon stock during tropical forest succession. J Ecol. https://doi.org/10.1111/1365-2745.14141

    Article  Google Scholar 

  • Segarra J, Buchaillot ML, Araus JL, Kefauver SC (2020) Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 10(5):641

    Article  CAS  Google Scholar 

  • Shibani N, Pandey A, Krishan Satyam V, Singh Bhari J, Karimi AB, Kumar Gupta S (2023) Study on the variation of NDVI, SAVI and EVI indices in Punjab State, India. IOP Conf Ser: Earth Environ Sci. https://doi.org/10.1088/1755-1315/1110/1/012070

    Article  Google Scholar 

  • Sun G, Jiao Z, Zhang A, Li F, Fu H, Li Z (2021) Hyperspectral image-based vegetation index (HSVI): a new vegetation index for urban ecological research. Int J Appl Earth Obs Geoinf 103:102529. https://doi.org/10.1016/j.jag.2021.102529

    Article  Google Scholar 

  • Taheri-Garavand A, Heidari-Maleni A, Mesri-Gundoshmian T, Samuel OD (2022) Application of artificial neural networks for the prediction of performance and exhaust emissions in IC engine using biodiesel-diesel blends containing quantum dot based on carbon doped. Energy Conv Manag X. https://doi.org/10.1016/j.ecmx.2022.100304

    Article  Google Scholar 

  • Tripathy S, Biswas S, Singh P, Ghose TJ, Purakayastha TJ, Ahmed N, Pandey RN, Das TK, Ramakrishnan B (2023) Soil quality, resilience, and crop productivity under 32-year-old long-term rice-rice system in acidic alfisol of Assam. J Soil Sci Plant Nutr 23:1–12

    Article  Google Scholar 

  • Tymoszuk M, Mroczek K, Kalisz S, Kubiczek H (2019) An investigation of biomass grindability. Energy 183:116–126

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003

  • Wehrhan M, Sommer M (2021) A parsimonious approach to estimate soil organic carbon applying unmanned aerial system (UAS) multispectral imagery and the topographic position index in a heterogeneous soil landscape. Remote Sens 13(18):3557

    Article  ADS  Google Scholar 

  • Wei S, Xu T, Niu GY, Zeng R (2022) Estimating irrigation water consumption using machine learning and remote sensing data in Kansas High Plains. Remote Sens 14(13):3004

    Article  ADS  Google Scholar 

  • Yao W, Li L (2014) A new regression model: modal linear regression. Scand J Stat 41(3):656–671. https://doi.org/10.1111/sjos.12054

    Article  MathSciNet  Google Scholar 

  • Zeraatpisheh M, Ayoubi S, Mirbagheri Z, Mosaddeghi MR, Xu M (2021) Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Reg 27:e00440

    Article  Google Scholar 

  • Zhang H, Wu P, Yin A, Yang X, Zhang M, Gao C (2017) Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: a comparison of multiple linear regressions and the random forest model. Sci Total Environ 592:704–713. https://doi.org/10.1016/j.scitotenv.2017.02.146

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang H, Shi P, Crucil G, van Wesemael B, Limbourg Q, Van Oost K (2021) Evaluating the capability of a UAV-borne spectrometer for soil organic carbon mapping in bare croplands. Land Degrad Dev 32(15):4375–4389

    Article  Google Scholar 

  • Žížala D, Minařík R, Zádorová T (2019) Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions. Remote Sens 11(24):2947

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by LIFE16 CCA/ES/000123 – LIFE AMDRYC4 PROJECT. We would like to express our particular gratitude to them. Additionally, we extend our thanks to Abdessamad Hilali, Doctor in Geomatics and Environmental Sciences at the Faculty of Science and Technology, Béni Mellal, for his invaluable technical support.

Funding

This work was supported by LIFE16 CCA/ES/000123—LIFE AMDRYC4 PROJECT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad El Jamaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no known interests or personal relationships that might appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Jamaoui, I., Sánchez, M.J.M., Sirvent, C.P. et al. Machine learning-driven modeling for soil organic carbon estimation from multispectral drone imaging: a case study in Corvera, Murcia (Spain). Model. Earth Syst. Environ. (2024). https://doi.org/10.1007/s40808-024-01963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40808-024-01963-y

Keywords

Navigation