Skip to main content

Advertisement

Log in

Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Harnessing energy from the sun is crucial for locations battling with energy poverty and generation, especially in Africa, where equity in energy distribution and generation is a daily challenge. However, the evaluation and analysis of solar radiation has been limited by the paucity of atmospheric data in the African region. This study used monthly downward surface solar radiation (SSRD) from ERA5 as reference data to evaluate simulations of solar radiation from CORDEX, CMIP5 and CMIP6 models spanning the period 1990−2020 (present-day), mid-future (2020−2050), and far-future (2070−2100) across 4 climatic zones (Coastal, Forest, Guinea and Sahel) in Nigeria. Solar radiation were found to be overestimated in the Guinea and Sahel zones of the country, but fairly good performance were made in the Coastal and Forest zones. CMIP5, CMIP6 and CORDEX individual models all exhibit strong agreement in the projection of solar dimming across the four climatic zones in the mid- and far-future under both RCP4.5/SSP5\(-\)4.5 and RCP8.5/SSP5\(-\)8.5 scenarios. However, under the RCP8.5/SSP5\(-\)8.5 the greatest magnitude of dimming (\(-\,35 W/m^2\)) was found in CMIP6 models in the far-future and (\(-12 W/m^2\)) in the mid-future. The projected solar dimming was also predominant in all climatic regions under SSP5\(-\)4.5 for CORDEX, CMIP5, and CMIP6 models but at a much lower magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data used in this study are publicly available in repositories stated in the manuscript.

References

  • Avila N, Carvallo JP, Shaw B, Kammen DM (2017) The energy challenge in sub-saharan africa: a guide for advocates and policy makers. Gener Energy Sustain Equitable Dev Part 1:1–79

    Google Scholar 

  • Babar B, Graversen R, Boström T (2019) Solar radiation estimation at high latitudes: assessment of the cmsaf databases, asr and era5. Sol Energy 182:397–411

    Google Scholar 

  • Bao Y, Song Z, Qiao F (2020) Fio-esm version 2.0: model description and evaluation. J Geophy Res Oceans 125(6):2019–016036

    Google Scholar 

  • Bartók B, Wild M, Folini D, Lüthi D, Kotlarski S, Schär C, Vautard R, Jerez S, Imecs Z (2017) Projected changes in surface solar radiation in cmip5 global climate models and in euro-cordex regional climate models for europe. Clim Dyn 49:2665–2683

    Google Scholar 

  • Bentsen M, Oliviè DJL (2019) NCC NorESM2-MM model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.8040

    Article  Google Scholar 

  • Bi D, Dix M, Marsland S, O’Farrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A et al (2013) The access coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63(1):41–64

    Google Scholar 

  • Briegleb BP (1992) Delta-eddington approximation for solar radiation in the ncar community climate model. J Geophys Res Atmos 97(D7):7603–7612

    Google Scholar 

  • Cesana GV, Khadir T, Chepfer H, Chiriaco M (2022) Southern ocean solar reflection biases in cmip6 models linked to cloud phase and vertical structure representations. Geophys Res Lett 49(22):2022–099777

    Google Scholar 

  • Chai Z (2020) CAS CAS-ESM2.0 model output prepared for CMIP6 CMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.1944

    Article  Google Scholar 

  • Chakraborty T, Lee X (2021) Large differences in diffuse solar radiation among current-generation reanalysis and satellite-derived products. J Clim 34(16):6635–6650

    Google Scholar 

  • Chanchangi YN, Adu F, Ghosh A, Sundaram S, Mallick TK (2022) Nigeria’s energy review: focusing on solar energy potential and penetration. Environ Dev Sustain 25:5755

    Google Scholar 

  • Cherchi A, Fogli PG, Lovato T, Peano D, Iovino D, Gualdi S, Masina S, Scoccimarro E, Materia S, Bellucci A et al (2019) Global mean climate and main patterns of variability in the cmcc-cm2 coupled model. J Adv Model Earth Syst 11(1):185–209

    Google Scholar 

  • Clough S, Shephard M, Mlawer E, Delamere J, Iacono M, Cady-Pereira K, Boukabara S, Brown P (2005) Atmospheric radiative transfer modeling: a summary of the aer codes. J Quant Spectrosc Radiat Transfer 91(2):233–244

    Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S-J et al (2004) Description of the ncar community atmosphere model (cam 3.0). NCAR Tech Note NCAR/TN-464+ STR 226:1326–1334

    Google Scholar 

  • Diaci J (1999) Solar radiation measurements in forests-i. evaluation of methods and instruments. Research Reports Forest and Wood Science and Technology, 105–138

  • Dix M, Vohralik P, Bi D, Rashid H, Marsland S, O’Farrell S, Uotila P, Hirst T, Kowalczyk E, Sullivan A et al (2013) The access coupled model: documentation of core cmip5 simulations and initial results. Aust Meteorol Oceanogr J 63(1):83–99

    Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz J-C, Ginoux P, Lin S-J, Schwarzkopf MD et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component am3 of the gfdl global coupled model cm3. J Clim 24(13):3484–3519

    Google Scholar 

  • Döscher R, Acosta M, Alessandri A, Anthoni P, Arneth A, Arsouze T, Bergmann T, Bernadello R, Bousetta S, Caron L-P et al (2021) The ec-earth3 earth system model for the climate model intercomparison project 6. Geosci Model Dev Discuss 2021:1–90

    Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R et al (2013) Climate change projections using the ipsl-cm5 earth system model: from cmip3 to cmip5. Clim Dyn 40:2123–2165

    Google Scholar 

  • (EC-Earth) E-EC, (2019) EC-earth-consortium EC-Earth3 model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.4700

  • (EC-Earth) E-EC, (2019) EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.727

  • (EC-Earth) E-EC, (2021) EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.4702

  • Edomah N, Ndulue G, Lemaire X (2021) A review of stakeholders and interventions in nigeria’s electricity sector. Heliyon 7(9):07956

    Google Scholar 

  • El Mghouchi Y, Ajzoul T, El Bouardi A (2016) Prediction of daily solar radiation intensity by day of the year in twenty-four cities of morocco. Renew Sustain Energy Rev 53:823–831

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Google Scholar 

  • Galin VY (1998) Parametrization of radiative processes in the dnm atmospheric model. Izvestiya Akademii Nauk-Rossijskaya Akademiya Nauk. Fizika Atmos i Okeana 34

  • (GERICS) CSCG (2017) MPI-CSC CORDEX data for Africa (AFR-44) based on REMO2009 model simulations. World Data Center for Climate (WDCC) at DKRZ. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CXAF44MCR1

  • He B, Bao Q, Wang X, Zhou L, Wu X, Liu Y, Wu G, Chen K, He S, Hu W et al (2019) Cas fgoals-f3-l model datasets for cmip6 historical atmospheric model intercomparison project simulation. Adv Atmos Sci 36:771–778

    Google Scholar 

  • Heo K-Y, Ha K-J, Yun K-S, Lee S-S, Kim H-J, Wang B (2014) Methods for uncertainty assessment of climate models and model predictions over east asia. Int J Climatol 34(2):377–390

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al (2020) The era5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Google Scholar 

  • Hogan RJ, Ahlgrimm M, Balsamo G, Beljaars A, Berrisford P, Bozzo A, Di Giuseppe F, Forbes RM, Haiden T, Lang S et al (2017) Radiation in Numerical Weather Prediction. Eur Centre Medium-Range Weather Forecast

  • Huang W (2019) THU CIESM model output prepared for CMIP6 ScenarioMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.1357

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the aer radiative transfer models. J Geophys Res Atmos. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  • Iwayemi A, Iwayemi A (1998) Energy Sect Dev Afr. African development bank

    Google Scholar 

  • Ji D, Wang L, Feng J, Wu Q, Cheng H, Zhang Q, Yang J, Dong W, Dai Y, Gong D et al (2014) Description and basic evaluation of beijing normal university earth system model (bnu-esm) version 1. Geosci Model Dev 7(5):2039–2064

    Google Scholar 

  • Jiang H, Lu N, Yao L, Qin J, Liu T (2023) Impact of climate changes on the stability of solar energy: evidence from observations and reanalysis. Renew Energy 208:726–736

    Google Scholar 

  • (KNMI) RNMI (2017) KNMI CORDEX data for Africa (AFR-44) based on RACMO22T model simulations. World Data Center for Climate (WDCC) at DKRZ. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CXAF44KNRT

  • Lee W-L, Liang H-C (2020) AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.9755

    Article  Google Scholar 

  • Lee W-L, Wang Y-C, Shiu C-J, Tsai I-C, Tu C-Y, Lan Y-Y, Chen J-P, Pan H-L, Hsu H-H et al (2020) Taiwan earth system model version 1: description and evaluation of mean state. Geosci Model Dev 13(9):3887–3904

    Google Scholar 

  • Lin Y, Huang X, Liang Y, Qin Y, Xu S, Huang W, Xu F, Liu L, Wang Y, Peng Y et al (2020) Community integrated earth system model (ciesm): description and evaluation. J Adv Model Earth Syst 12(8):2019–002036

    Google Scholar 

  • Liu Z, Yang X, Xie R, Lin X, Li T, Batchelor WD, Zhao J, Zhang Z, Sun S, Zhang F et al (2021) Prolongation of the grain filling period and change in radiation simultaneously increased maize yields in china. Agric For Meteorol 308:108573

    Google Scholar 

  • Long MC, Lindsay K, Peacock S, Moore JK, Doney SC (2013) Twentieth-century oceanic carbon uptake and storage in cesm1 (bgc). J Clim 26(18):6775–6800

    Google Scholar 

  • Lovato T, Peano D (2020) CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.1365

    Article  Google Scholar 

  • Lovato T, Peano D, Butenschön M (2021) CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.13195

    Article  Google Scholar 

  • Lovato T, Peano D, Butenschön M, Materia S, Iovino D, Scoccimarro E, Fogli P, Cherchi A, Bellucci A, Gualdi S et al (2022) Cmip6 simulations with the cmcc earth system model (cmcc-esm2). J Adv Model Earth Syst 14(3):2021–002814

    Google Scholar 

  • Lu Y, Wang L, Zhu C, Zou L, Zhang M, Feng L, Cao Q (2023) Predicting surface solar radiation using a hybrid radiative transfer-machine learning model. Renew Sustain Energy Rev 173:113105

    Google Scholar 

  • Matthes K, Funke B, Andersson ME, Barnard L, Beer J, Charbonneau P, Clilverd MA, Dudok de Wit T, Haberreiter M, Hendry A, Jackman CH, Kretzschmar M, Kruschke T, Kunze M, Langematz U, Marsh DR, Maycock AC, Misios S, Rodger CJ, Scaife AA, Seppälä A, Shangguan M, Sinnhuber M, Tourpali K, Usoskin I, van de Kamp M, Verronen PT, Versick S (2017) Solar forcing for cmip6 (v3.2). Geosci Model Dev 10(6):2247–2302. https://doi.org/10.5194/gmd-10-2247-2017

    Article  Google Scholar 

  • Meng Q, Liu B, Yang H, Chen X (2020) Solar dimming decreased maize yield potential on the north china plain. Food and Energy Secur 9(4):235

    Google Scholar 

  • Meteorological S, (SMHI) HI (2017) cordex AFR-44 SMHI RCA4. World Data Center for Clim http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CXAF44SMRCA4

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682

    Google Scholar 

  • Neale R, Gettelman A, Park S, Chen C, Lauritzen P, Williamson D, Conley A, Kinnison D, Marsh D, Smith A et al (2010) Description of the ncar community atmosphere model (cam 5.0), ncar tech note tn-486. Nat Center Atmos Res. https://doi.org/10.5065/wgtk-4g06

    Article  Google Scholar 

  • Nešović AM (2022) Comparison of theoretical and isotropic models of incoming solar radiation for the tilted, fixed, flat-plate solar collector southoriented. Tehnika 77(5):553–558

    Google Scholar 

  • Ogunjo ST, Olusegun CF, Fuwape IA (2022) Evaluation of monthly precipitation data from three gridded climate data products over nigeria. Remote Sens Earth Syst Sci 5:119

    Google Scholar 

  • Ojo OS, Adeyemi B, Ogolo EO (2021) Geostatistical distribution of net radiation at different sky conditions over west africa. Earth Syst Environ 5(1):43–57

    Google Scholar 

  • Panitz H-J, Schubert-Frisius M, Dosio A (2015) CORDEX simulations (evaluation, historical, rcp85, and rcp45) on a ca 50 km grid over Africa based on CCLM4-8-17 forced by MPI-ESM-LR, EC-EARTH, CNRM-CM5 and HadGEM2-ES. World Data Center for Clim. https://doi.org/10.1594/WDCC/CXAF44CLCL

    Article  Google Scholar 

  • Patchali TE, Ajide OO, Matthew OJ, Salau T, Oyewola OM (2020) Examination of potential impacts of future climate change on solar radiation in togo, west africa. SN Appl Sci 2:1–13

    Google Scholar 

  • Pincus R, Barker HW, Morcrette J-J (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J Geophys Res Atmos. https://doi.org/10.1029/2002JD003322

    Article  Google Scholar 

  • Qiao F, Song Z, Bao Y, Song Y, Shu Q, Huang C, Zhao W (2013) Development and evaluation of an earth system model with surface gravity waves. J Geophys Res Oceans 118(9):4514–4524

    Google Scholar 

  • Sabah F, Salmn M (2021) Modeling of global solar radiation in algeria based on geographical and all climatic parameters. Int J Comput Exp Sci Eng 7(3):119–122

    Google Scholar 

  • Salaudeen A, Ismail A, Adeogun B, Ajibike M (2021) Validating gauge-based spatial surface atmospheric temperature datasets for upper Benue river Basin, Nigeria. Niger J Environ Sci Technol 5(1):173–190

    Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R et al (2014) Configuration and assessment of the giss modele2 contributions to the cmip5 archive. J Adv Model Earth Syst 6(1):141–184

    Google Scholar 

  • Seland Ø, Bentsen M, Oliviè DJL, Toniazzo T, Gjermundsen A, Graff LS, Debernard JB, Gupta AK, He Y-C, Kirkevåg A et al (2020) Overview of the norwegian earth system model (noresm2) and key climate response of cmip6 deck, historical, and scenario simulations. Geosci Model Dev 13:6165

    Google Scholar 

  • Smith CJ, Forster PM (2021) Suppressed late-20th century warming in cmip6 models explained by forcing and feedbacks. Geophys Res Lett 48(19):2021–094948

    Google Scholar 

  • Solomon S (2007) Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC vol. 4. Cambridge university press

  • Song Z, Qiao F, Bao Y, Shu Q, Song Y, Yang X (2019) FIO-QLNM FIO-ESM2.0 model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.9199

    Article  Google Scholar 

  • Tahir Z.u.R., Azhar M, Mumtaz M, Asim M, Moeenuddin G, Sharif H, Hassan S (2020) Evaluation of the reanalysis surface solar radiation from ncep, ecmwf, nasa, and jma using surface observations for balochistan, pakistan. J Renew Sustain Energy 12(2):023703

    Google Scholar 

  • Tang W, Qin J, Yang K, Zhu F, Zhou X (2021) Does era5 outperform satellite products in estimating atmospheric downward longwave radiation at the surface? Atmos Res 252:105453

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of cmip5 and the experiment design. Bull Am Meteor Soc 93(4):485–498

    Google Scholar 

  • Trolliet M, Walawender JP, Bourlès B, Boilley A, Trentmann J, Blanc P, Lefèvre M, Wald L (2018) Downwelling surface solar irradiance in the tropical atlantic ocean: a comparison of re-analyses and satellite-derived data sets to pirata measurements. Ocean Sci 14(5):1021–1056

    Google Scholar 

  • Urraca R, Huld T, Gracia-Amillo A, Martinez-de-Pison FJ, Kaspar F, Sanz-Garcia A (2018) Evaluation of global horizontal irradiance estimates from era5 and cosmo-rea6 reanalyses using ground and satellite-based data. Sol Energy 164:339–354

    Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M et al (2013) The cnrm-cm5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Google Scholar 

  • Volodin E, Dianskii N, Gusev A (2010) Simulating present-day climate with the inmcm4. 0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46:414–431

    Google Scholar 

  • Volodin E, Mortikov E, Kostrykin S, Galin VY, Lykossov V, Gritsun A, Diansky N, Gusev A, Iakovlev N (2017) Simulation of the present-day climate with the climate model inmcm5. Clim Dyn 49:3715–3734

    Google Scholar 

  • Volodin E, Mortikov E, Gritsun A, Lykossov V, Galin V, Diansky N, Gusev A, Kostrykin S, Iakovlev N, Shestakova A et al (2019) Cmip6. scenariomip. inm. inm-cm5-0. ssp585

  • von Storch J-S, Putrasahan D, Lohmann K, Gutjahr O, Jungclaus J, Bittner M, Haak H, Wieners K-H, Giorgetta M, Reick C, Esch M, Gayler V, de Vrese P, Raddatz T, Mauritsen T, Behrens J, Brovkin V, Claussen M, Crueger T, Fast I, Fiedler S, Hagemann S, Hohenegger C, Jahns T, Kloster S, Kinne S, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Müller W, Nabel J, Notz D, Peters-von Gehlen K, Pincus R, Pohlmann H, Pongratz J, Rast S, Schmidt H, Schnur R, Schulzweida U, Six K, Stevens B, Voigt A, Roeckner E (2017) MPI-M MPIESM1.2-HR model output prepared for CMIP6 HighResMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.762

    Article  Google Scholar 

  • Wang S-Y, Qiu J, Li F-F (2018) Hybrid decomposition-reconfiguration models for long-term solar radiation prediction only using historical radiation records. Energies 11(6):1376

    Google Scholar 

  • Wang Z, Wang C, Yang S, Lei Y, Che H, Zhang X, Wang Q (2022) Evaluation of surface solar radiation trends over china since the 1960s in the cmip6 models and potential impact of aerosol emissions. Atmos Res 268:105991

    Google Scholar 

  • Wu J, Han Z, Yan Y, Gao X (2022) Future projection of solar energy over china based on multi-regional climate model simulations. Earth Space Sci 9(5):2021–002207

    Google Scholar 

  • Xin X, Zhang J, Zhang F, Wu T, Shi X, Li J, Chu M, Liu Q, Yan J, Ma Q, Wei M (2018) BCC BCC-CSM2MR model output prepared for CMIP6 CMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.1725

    Article  Google Scholar 

  • Yang Q, Zhang F, Zhang H, Wang Z, Iwabuchi H, Li J (2020) Impact of \(\delta \)-four-stream radiative transfer scheme on global climate model simulation. J Quant Spectrosc Radiat Transfer 243:106800

    Google Scholar 

  • Yu Y (2019) Cas fgoals-f3-l model output prepared for cmip6 scenariomip. Version 532:20191204

    Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the meteorological research institute: Mri-cgcm3;model description and basic performance. J Meteorol Soc Jpn Ser II 90A:23–64. https://doi.org/10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Yukimoto S, Koshiro T, Kawai H, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yoshimura H, Shindo E, Mizuta R, Ishii M, Obata A, Adachi Y (2019) MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.621

    Article  Google Scholar 

  • Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M et al (2019) The meteorological research institute earth system model version 2.0, mri-esm2. 0: description and basic evaluation of the physical component. J Meteorol Soc Jpn Ser II 97(5):931–965

    Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus J (2013) Multidecadal-to-centennial sst variability in the mpi-esm simulation ensemble for the last millennium. Clim Dyn 40:1301–1318

    Google Scholar 

  • Zhang F, Li J (2013) Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J Atmos Sci 70(10):3084–3101

    Google Scholar 

  • Zhang H, Zhang M, Jin J, Fei K, Ji D, Wu C, Zhu J, He J, Chai Z, Xie J et al (2020) Description and climate simulation performance of cas-esm version 2. J Adv Model Earth Syst 12(12):2020–002210

    Google Scholar 

  • Zhou Y, Liu Y, Wang D, De G, Li Y, Liu X, Wang Y (2021) A novel combined multi-task learning and gaussian process regression model for the prediction of multi-timescale and multi-component of solar radiation. J Clean Prod 284:124710

    Google Scholar 

Download references

Acknowledgements

We thank the Working Group on Coupled Modelling of the World Climate Research Programme for coordinating and promoting CMIP5, CMIP6 and CORDEX experiments. We thank the different modelling groups for their efforts in generating and sharing model outputs. In addition, the Earth System Grid Federation infrastructure, an international effort led by the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP) for archiving the data and facilitating access. Additionally, we acknowledge the support of the various funding agencies that contribute to CMIP5, CMIP6, CORDEX and ESGF.

Funding

The authors did not receive any funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiana Olusegun.

Ethics declarations

Conflict of interest

The authors declare that there was no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Code availability

Authors can make the code available on reasonable requests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olusegun, C., Ojo, O., Olusola, A. et al. Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. Model. Earth Syst. Environ. 10, 1423–1440 (2024). https://doi.org/10.1007/s40808-023-01848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-023-01848-6

Keywords

Navigation