Skip to main content

Advertisement

Log in

Simulation of extreme event-based rainfall–runoff process of an urban catchment area using HEC-HMS

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Flood is ranked as the deadliest natural disaster that has been experienced by the urban basins in the world. Its detrimental effects can be minimized by appropriate modeling, analysis and management methods. Such modeling and analysis techniques help in flood risk assessment predicting flood occurrence, aid in the emergency preparation for evacuation and reduce damage from the impact of floods. Numerous modeling techniques are available for analyzing flood events, of which HEC-HMS software is chosen for this explorative study because of its simplicity and as it is a freely available open-source software. The present study aims to develop a rainfall–runoff simulation model by generating peak flow and volume of the extreme rainfall event that occurred on 22 November 1999 in the ungauged Koraiyar basin located south of Tiruchirappalli City in South India. The hydrographs are generated for the basin by using specified hyetograph and frequency storm method to identify the best method to be adopted in the study. Digital elevation model processed with geographic information system (GIS) and HEC-Geo HMS, which is an extension of GIS, is used for the analysis. Using the terrain processing tools in ArcGIS, the basin delineation and parameters such as slope and river length are extracted from the basin. The data generated during the HEC-Geo HMS process are the hydrologic parameters of Koraiyar basin, and it is imported to HEC-HMS modeling for generating peak flow and volume. In the modeling process, HEC-HMS has three modules, namely transform, loss and base flow. SCS curve number and SCS unit hydrograph are used to determine the losses and transformation of rainfall into the runoff process in the present study. The SCS method is adopted because of its simplicity and requirement of limited data approach for modeling. The peak flow and volume prepared from the model are compared with the standard Nash–Sutcliffe values. The frequency storm method has a Nash value of 0.7, which is higher than the value obtained from the specified hyetograph process, and it is chosen as a better model for generating flood peak and volume for different return periods in the basin. It can therefore be adopted for other studies of similar basin conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are thankful to the Editorial Board and anonymous reviewers for their constructive comments, which had helped to improve the manuscript. The authors also would like to express their gratitude to the State Surface and Groundwater Data Centre, Chennai, for readily providing the rainfall data.

Funding

Nil—no supporting funds from the organization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surendar Natarajan or Nisha Radhakrishnan.

Ethics declarations

Conflict of interest

The author declares there is no conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, S., Radhakrishnan, N. Simulation of extreme event-based rainfall–runoff process of an urban catchment area using HEC-HMS. Model. Earth Syst. Environ. 5, 1867–1881 (2019). https://doi.org/10.1007/s40808-019-00644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00644-5

Keywords

Navigation