Skip to main content

Advertisement

Log in

Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

In this study conducted in the semi-arid region of the irrigated plain of Doukkala, Morocco, we evaluated the spatial variation in the soil of organic matter (OM), pH of soil, cation exchange capacity (CEC), potassium (K2O), soil phosphorus (P2O5), clay, sand and silt, this investigation use conventional statistics and a geographical information system (GIS) to create a map of soil redistribution, which included a newly compiled 1:10,000 digital soil map, and using 1865 soil samples (0–20 cm), the produce maps of distribution the variability of soil physico-chemical properties and to provide information which revealed the soil quality functions of the physicochemical characteristics. Coefficient of variation (CV) indicated that OM, P2O5, K2O, CEC, and Silt indicated that high variation (CV > 40%), Moreover, the Coefficient of variation the pH, the our areas value was 9, 91%, which indicated very low variation. The semivariogram model of soil physico-chemical properties [lag distance, rang, nugget (C0), partial sill (C), Sill (C0 + C) and nugget/sill ratio] indicated the diver’s spatial dependency of soil properties (strongly, moderately and weakly). According to spatial variability of parameters was mapped by ordinary kriging using spherical model based on root mean square error and the interpolated methods of inverse distance weighting deterministic. In this work, we find that the kriging ordinary and deterministic methods show almost similar results with a spatial distribution and provide the heterogeneity the distribution map of four area in different soil parameters in the study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Kaisi MM, Yin XH, Licht MA (2005) Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric Ecosyst Environ 105:635–647

    Article  Google Scholar 

  • Arshad MA, Coen GM (1992) Characterization of soil quality physical and chemical criteria. Am J Altern Agric 7:25–32 (Atlas de la qualité des sols et des eaux soutarraines dans le périmètre irrigué des doukkala)

    Article  Google Scholar 

  • Ayoubi S, Zamani SM, Khormali F (2007) Spatial variability of some soil properties for site specific farming in northern Iran. Int J Plant Prod 1:225–236

    Google Scholar 

  • Badraoui M (1998) Effects of intensive cropping under irrigation on soil quality in Morocco. In: Badraoui M (ed) Proceedings of the 16th World congress of soil science, B5-post congress tour in Morocco, AMSSOL, Rabat

  • Badraoui M (2006) Connaissance et utilisation des ressources en sol au Maroc, pp 93–108

  • Badraoui M, Bouaziz A, et Kabassi M (1993) Contraintes physiques et potentialité du Milieu. Cas des Doukkala, vol 1. tome 2, I.A.V. Hassan II, Rabat

  • Badraoui M, Soudi B, Farhat A (1998) Variation de la qualité des sols: une base pour évaluer la durabilité de la mise en valeur agricole sous irrigation par pivot au Maroc. Etude et gestion des sols 5:225–234

    Google Scholar 

  • Badraoui M, Naman F et al (2008) Impact de l’intensification agricole sur la qualité des sols et des eaux souterraines dans le périmètre irrigue des doukkala

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Elsevier, Amsterdam

    Google Scholar 

  • Cambardella CA, Karlen DL (1999) Spatial analysis of soil fertility parameters. Precis Agric 1:5–14

    Article  Google Scholar 

  • Cambardella C, Moorman T, Novak J, Parkin T, Karlen D, Turco R, Konopka A (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1510

    Article  Google Scholar 

  • Cao CY, Jiang SY, Ying Z, Zhang FX, Han XS (2011) Spatial variability of soil nutrients and microbiological properties after the establishment of leguminous shrub Caragana microphylla Lam. plantation on sand dune in the Horqin Sandy Land of North east China. Ecol Eng 37:1467–1475

    Article  Google Scholar 

  • Cambule AH, Rossiter DG, Stoorvogel JJ, Smaling EMA (2014a) Soil organic carbon stocks in the Limpopo National Park, Mozambique: amount, spatial distribution and uncertainty. Geoderma 213:46–56

    Article  Google Scholar 

  • Cambule AH, Rossiter DG, Stoorvogel JJ, Smaling EMA (2014b) Soil organic carbon stocks in the Limpopo National Park, Mozambique: amount, spatial distribution and uncertainty. Geoderma 213:46–56 (SI)

    Article  Google Scholar 

  • Chen H, Hou R, Gong Y, Li H, Fan M, Kuzyakov Y (2009) Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res 106:85–94

    Article  Google Scholar 

  • Chofqi A (2004) Mise en évidence des mécanismes de contamination des eaux souterraines par lixiviats d’une décharge incontrôlée (El Jadida, Maroc): Géologie, Hydrologie, géo électrique, géochimique et épidémiologie. Thèse de doctorat National

  • Choudhury BU, Mohapatra KP, Nongkhlaw L, Ngachan SV, Hazarika S, Rajkhowa DJ, Munda GC (2013) Spatial variability in distribution of organic carbon stocks in the soils of North East India. Curr Sci 104(5):604–614

    Google Scholar 

  • CPCS (1967) Classification française des sols. Doc. De la Commission de Pédologie et de Cartographie des Sols

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Dai F, Zhou Q, Lv Z, Wang X, Liu G (2014) Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Indic 45:184–194

    Article  Google Scholar 

  • Di Virgilio N, Monti A, Venturi G (2007) Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Res 101:232–239

    Article  Google Scholar 

  • El Bouazaoui (2006) Adsorption du phosphore et paramètres physicochimiques des sols irrigués de la région des doukkala; Maroc, Mémoire de DESA

  • Emery X, Ortiz JM (2007) Weighted sample variograms as a tool to better assess the spatial variability of soil properties. Geoderma 140:81–89

    Article  Google Scholar 

  • FAO (2011) Guidelines for soil profile description, 3rd edn. Food and agriculture Organisation of the United nations, International soil soil reference information Centre, Land and Water Development Division, FAO, Rome

    Google Scholar 

  • Fu W, Tunney H, Zhang C (2010) Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Res 106:185–193

    Article  Google Scholar 

  • Gami SK, Lauren JG, Duxbury JM (2009) Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma 153:304–311

    Article  Google Scholar 

  • Gana L (2002) Qualité des eaux et des sols dans les périmètres des doukkala. Revue H.T.E. N° 123

  • Gao XZ, MaW Q, Du S, Zhang FS, Mao DR (2001) Current status and problems of fertilization in China. Chin J Soil Sci 6:258–261

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, 467 pp

    Google Scholar 

  • Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J (2005) Geostatistical modelling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res 41:W07013

    Article  Google Scholar 

  • Hillel D (1980) Applications of soil physics. Academic press, New York, p 385

    Google Scholar 

  • Huang B, Sun WX, Zhao YC, Zhu J, Yang RQ, Zhou Z, Ding F, Su JP (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 139:336–345

    Article  Google Scholar 

  • Jalali M (2007) Spatial variability in potassium release among calcareous soils of western Iran. Geoderma 140:42–51

    Article  Google Scholar 

  • Jennings E, Allott N, Pierson DC, Schneiderman EM, Lenihan D, Samuelsson P, Taylor D (2009) Impacts of climate change on phosphorus loading from a grassland catchment: Implications for future management. Water Res 43:4316–4326

    Article  Google Scholar 

  • Kerry R, Oliver MA (2007) Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 140:383–396

    Article  Google Scholar 

  • Li Y, Shi Z, Li F (2007) Delineation of site specific management zones based on temporal and spatial variability of soil electrical conductivity. Pedosphere 17:156–164

    Article  Google Scholar 

  • Li Y, Shi Z, Li F (2011) Delineation of site-specific management zones based on temporal and spatial variability of soil electrical conductivity. Pedosphere 17:156–164

    Article  Google Scholar 

  • Li J, Carlson BE, Lacis AA (2013) Application of spectral analysis techniques in the inter-comparison of aerosol data, Part I: An EOF approach to analyze the spatial-temporal variability of aerosol optical depth using multiple remote sensing data sets. J Geophys Res Atmos 118(15):8640–8648

    Article  Google Scholar 

  • Liu W, Su Y, Yang R, Yang Q, Fan G (2011) Temporal and spatial variability of soil organic matter and total nitrogen in a typical oasis cropland ecosystem in arid region of Northwest China. Environ Earth Sci 64:2247–2257. https://doi.org/10.1007/s12665-011-1053-5

    Article  Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2013a) Large-scale spatial interpolation of soil pH across the Loess Plateau, China. Environ Earth Sci 69(8):2731–2741

    Article  Google Scholar 

  • Liu Z-P, Shao M-A, Wang Y-Q (2013b) Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 197–198:67–78

    Article  Google Scholar 

  • Liu Z, Zhou W, Shen J, He P, Lei Q, Liang G (2014) A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma 235–236:39–47

    Article  Google Scholar 

  • Liu Y, Wang H, Zhang H, Liber K (2016) A comprehensive support vector machine-based classification model for soil quality assessment. Soil Tillage Res 155:19–26

    Article  Google Scholar 

  • Mabit L, Bernard C, Makhlouf M, Laverdière MR (2008) Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma Model Pedogenes 145:245–251

    Article  Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  • Mathieu C (1996) Structure et programme de la normalisation “qualité des sols”. Etude et Gestion des sols 3(2):125–133

    Google Scholar 

  • Naman F (2003) Statut de la matière organique des sols en zones irriguées: cas du périmètre irrigues des doukkala au Maroc, thèse de doctorat d’état. Université Chouaib Doukkali, El Jadida, p 25

    Google Scholar 

  • Naman F, Badraoui M (2008) Impact de l’intensification agricole sur la qualité des sols et des eaux souterraines dans le périmètre irrigue des Doukkala

  • Nielsen DR, Bouma J (1985) Soil spatial variability. In: Proceedings of a workshop of the ISSS and the SSSA, Las Vegas, USA, 30th of November to 1st of December 1984. Pudoc, Wageningen, p 243

  • Noble AD, Gillman GP, Ruaysoongnern S (2000) A cation exchange index for assessing degradation of acid soil by further acidification under permanent agriculture in the tropics. Eur J Soil Sci 51:233–243

    Article  Google Scholar 

  • Oleschko K, Barra JDE, Carretera ARH (1996) Structure and pedofeatures of Guanajuato (Mexico) Vertisol under different cropping systems. Soil Tillage Res 37:15–36

    Article  Google Scholar 

  • Outeiro L, Aspero F, Ubeda X (2008) Geostatistical methods to study spatial variability of soil cations after a prescribed fire and rainfall. Catena 74:310–320

    Article  Google Scholar 

  • Pan G, Smith P, Pan W (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric Ecosyst Environ 129:344–348

    Article  Google Scholar 

  • Patil RH, Laegdsmand M, Olesen JE, Porter JR (2010) Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric Ecosyst Environ 139:195–205

    Article  Google Scholar 

  • Peigné J, Vian JF, Canavacciuolo M, Bottollier B, Chaussod R (2009) Soils sampling based on field spatial variability of soil microbial indicators. Eur J Soil Biol 45:488–495

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167 (Reeves, 1997)

    Article  Google Scholar 

  • Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A (2009) Spatial pattern and scale of soil N and P fractions under the influence of a leguminous shrub in a Pinus canariensis forest. Geoderma 151:303–310

    Article  Google Scholar 

  • Rosemary F, Vitharana UWA, Indraratne SP, Weerasooriya R, Mishra U (2016) Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150:53–61

    Article  Google Scholar 

  • Rosemary F, Vitharana UWA, Indraratne SP, Weerasooriya R, Mishra U (2017) Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150:53–61

    Article  Google Scholar 

  • Rullan A (2003) Evaluation du système de recherche scientifique et technique au Maroc: Sols et Environnement. MESFCRS, SERS

  • Rüth B, Lennartz B (2008) Spatial variability of soil properties and rice yield along two catenas in Southeast China11Project supported by the German Research Foundation (DFG) (No. LE 945/10-1). Pedosphere 18:409–420

    Article  Google Scholar 

  • Soudi B, Rahaoui M, El Hadani D, Benzakour M (1999) Evalution de l’indice de la qualité des sols en zone irriquées: cas des Doukkala. Géoobservateur 10:213–233

    Google Scholar 

  • Šnajdr J, Valá šková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activies and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075

    Article  Google Scholar 

  • Susanne A, Michelle MW (1998) Long-term trends of corn yield and soil organic matter in different crop sequences and soil fertility treatments on the Morrow Plot. Adv Agron 62:153–197

    Google Scholar 

  • Tagore GS, Singh B, Kulhare PS, Jatav RD (2015) Spatial variability of available nutrients in soils of Nainpur tehsil of Mandla district of Madhya Pradesh, India using Geo-statistical approach. Afr J Agric Res 10:3358–3373

    Article  Google Scholar 

  • Tang L, Zeng GM, Nourbakhsh F, Shen GL (2009) Artificial neural network approach for predicting cation exchange capacity in soil based on physico-chemical properties. Environ Eng Sci 26:137–146

    Article  Google Scholar 

  • Umali BP, Oliver DP, Forrester S, Chittleborough DJ, Hutson JL, Kookana RS, Ostendorf B (2012) The effect of terrain and management on the spatial variability of soil properties in an apple orchard. Catena 93:38–48

    Article  Google Scholar 

  • Vasu D, Singh SK, Sahu N, Tiwary P, Chandran P, Duraisami VP, Ramamurthy V, Lalitha M, Kalaiselvi B (2017) Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res 169:25–34

    Article  Google Scholar 

  • Vrščaj B, Poggio L, Marsan FA (2008) A method for soil environmental quality evaluation for management and planning in urban areas. Landsc Urban Plan 88:81–94

    Article  Google Scholar 

  • Webster R, Oliver M (2001) Geostatistics for environmental scientists. Wiley, West Sussex, pp 47–131

    Google Scholar 

  • Weindorf DC, Zhu Y (2010) Spatial variability of soil properties at Capulin Volcano, Mew Mexico, USA: implications for sampling strategy. Pedosphere 20:185–197

    Article  Google Scholar 

  • Xin Z, Qin Y, Yu X (2016) Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. CATENA 137:660–669

    Article  Google Scholar 

  • Xu GC, Li ZB, Li P, Lu KX, Wang Y (2013) Spatial variability of soil organic carbon in a typical watershed in the source area of the middle Dan River, China. Soil Res 51(1):41–49

    Article  Google Scholar 

  • Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005) Pools and distributions of soil phosphorus in China. Glob Biogeochem. https://doi.org/10.1029/2004GB002296

    Google Scholar 

  • Zhang X-Y, Yue-Yu SUI, Zhang X-D, Kai M, Herbert SJ (2007) Spatial variability of nutrient properties in black soil of Northeast China11Project supported by the National Basic Research Program (973 Program) of China (No. 2005CB121108) and the Heilongjiang Provincial Natural Science Foundation of China (No. C2004-25). Pedosphere 17:19–29

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Database of soil were provided by Regional Office for the implementation of the agricultural value of Doukkala (ORMVAD), El Jadida, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Eljebri.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eljebri, S., Mounir, M., Faroukh, A.T. et al. Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Model. Earth Syst. Environ. 5, 669–687 (2019). https://doi.org/10.1007/s40808-018-0558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0558-2

Keywords

Navigation