Skip to main content

Advertisement

Log in

A Technique for Comparing Wall Pressure Distributions in Steady Flow Through Rigid Versus Flexible Patient-based Abdominal Aortic Aneurysm Phantoms

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysms (AAAs) represent permanent, localized dilations of the abdominal aorta. Here, we describe a procedure for noninvasively measuring the flow-induced wall pressure distribution in both effectively rigid, thick-wall and flexible, thin-wall phantoms under perfusion conditions dynamically simulating the in vivo abdominal aorta. Both phantoms accurately replicated the shape of patient AAAs including the renal and iliac arteries, and the flexible phantoms reflected patient tissue mechanical properties as well. As an example of their use, wall pressure distributions measured in rigid and flexible phantoms derived from one representative patient under flow conditions emulating the aorta at rest are presented. In both phantoms, there was a net pressure decrease from the upstream end of the bulge to the downstream end. However, there was a five times larger variation of wall pressure magnitude along the bulge region of the flexible phantom than along the rigid phantom, 6–7 mmHg versus more than 30 mmHg. In addition, in the rigid phantom, pressure signal fluctuations were of the same order of magnitude as the pressure transducer inherent noise level. In the flexible phantom, they were approximately 10 times the noise level in the absence of flow, suggesting that flow in the flexible phantom was unstable even at Reynolds number 500.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashton HA, Buxton MJ, Day NE et al (2002) The Multicentre Aneurysm Screening Study (Mass) into the Effect of Abdominal Aortic Aneurysm Screening on Mortality in Men: A Randomized Control Trial. Lancet 360:1531–1539

    Article  Google Scholar 

  2. Lederle FA, Johnson GR, Wilson SE et al (2002) Veterans Affairs Cooperative Study, I. Rupture Rate of Large Abdominal Aortic Aneurysms in Patients Refusing or Unfit for Elective Repair. Journal of the American Medical Association 287:2968–2972

    Article  Google Scholar 

  3. Karkos C, Mukhodpadhyay U, Papakostas I, Ghosh J, Thomson G, Hughes R (2000) Abdominal Aortic Aneurysm: The Role of Clinical Examination and Opportunistic Detection. European Journal of Vascular and Endovascular Surgery 19:299

    Article  Google Scholar 

  4. Davis M, Harris M, Earnshaw JJ (2013) Implementation of the National Health Service Abdominal Aortic Aneurysm Screening Program in England. Journal of Vascular Surgery 57:1440–1445

    Article  Google Scholar 

  5. Lederle FA (2009) The Natural History of Abdominal Aortic Aneurysm. Acta Chirurgica Belgica 109:7–12

    Article  Google Scholar 

  6. National Center for Health Statistics, URL www.cdc.gov/nchs/deaths.htm [accessed October 2013]

  7. Nevitt MP, Ballard DJ, Hallett JW (1989) Prognosis of Abdominal Aortic Aneurysms: A Population Based Study. The New England Journal of Medicine 321:1009–1014

    Article  Google Scholar 

  8. Darling, C.R., Carlene, R.M., Brewester, D.C., and Ottinger, L.W., “Autopsy Study of Unoperated Abdominal Aortic Aneurysms, the Case for Early Resection,” Circulation 56(3 supplement II): 61–65 (1977).

  9. Finlayson SRG, Birkmeyer JD, Fillinger MF, Cronenwett JL (1999) Should Endovascular Surgery Lower the Threshold for Abdominal Aortic Aneurysms? Journal of Vascular Surgery 29:973–985

    Article  Google Scholar 

  10. Appelberg M (1994) Abdominal Aortic Aneurysms: Pathogenesis, Diagnosis and Management. Modern Medicine of Australia 37:54–63

    Google Scholar 

  11. Nicholls SC, Gardner JB, Meissner MH, Johansen KH (1998) Rupture in Small Abdominal Aneurysms. Journal of Vascular Surgery 28:884–888

    Article  Google Scholar 

  12. Humphrey JD, Taylor CA (2008) Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models. Annual Review of Biomedical Engineering 10:221–246

    Article  Google Scholar 

  13. Fillinger M (2006) The Long-Term Relationship of Wall Stress to The Natural History of Abdominal Aortic Aneurysms (Finite Element Analysis and Other Methods). Annals of the New York Academy of Sciences 1085:22–28

    Article  Google Scholar 

  14. Vorp DA (2007) Biomechanics of Abdominal Aortic Aneurysm. Journal of Biomechanics 40:1887–1902

    Article  Google Scholar 

  15. Raghavan ML, Vorp DA (2000) Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysms: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability. Journal of Biomechanics 33:475–482

    Article  Google Scholar 

  16. Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA (2008) The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms. Annals of Biomedical Engineering 36:921–932

    Article  Google Scholar 

  17. Li Z, Kleinstreuer C (2006) Effects of Blood Flow and Vessel Geometry on Wall Stress and Rupture Risk of Abdominal Aortic Aneurysms. Journal of Medical Engineering & Technology 30:283–297

    Article  Google Scholar 

  18. Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH (2008) Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of an Abdominal Aortic Aneurysm. Journal of Vascular Surgery 47:928–935

    Article  Google Scholar 

  19. Bluestein D, Dumont K, De Beule M et al (2009) Intraluminal Thrombus and Risk of Rupture in Patient Specific Abdominal Aortic Aneurysms—FSI Modeling. Computer Methods in Biomechanics and Biomedical Engineering 12:73–81

    Article  Google Scholar 

  20. Scotti CM, Jimenez J, Muluk SC, Finol EA (2008) Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid–Structure Interaction. Computer Methods in Biomechanics and Biomedical Engineering 11:301–322

    Article  Google Scholar 

  21. Dorfmann AL, Wilson C, Edgar ES, Peattie RA (2010) Evaluating Patient-Specific Abdominal Aortic Aneurysm Wall Stress Based on Flow-Induced Loading. Biomechanics and Modeling in Mechanobiology 9:127–139

    Article  Google Scholar 

  22. Doyle BJ, Killion J, Callanan A (2012) Use of the Photoelastic Method and Finite Element Analysis in the Assessment of Wall Strain in Abdominal Aortic Aneurysm Models. Journal of Biomechanics 45:1759–1768

    Article  Google Scholar 

  23. Corbett TJ, Doyle BJ, Callanan A, Walsh MT, McGloughlin TM (2010) Engineering Silicone Rubbers for in Vitro Studies: Creating AAA Models and ILT Analogues With Physiological Properties. Journal of Biomechanical Engineering 132:011008

    Article  Google Scholar 

  24. Doyle BJ, Cloonan AJ, Walsh MT, Vorp DA, McGloughlin TM (2010) Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques. Journal of Biomechanics 43:1408–1416

    Article  Google Scholar 

  25. Pancheri FQ, Dorfmann L (2014) Strain Controlled Biaxial Stretch: An Experimental Characterization of Natural Rubber. Rubber Chemistry and Technology 87:120–138

    Article  Google Scholar 

  26. Margossian, CM., Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties, MS Thesis, Tufts University, Medford, MA (2012).

  27. Edgar, ES., Computational and Experimental Investigation of Steady Flow Fields, Turbulence and Hemodynamic Wall Stresses in Patient-Specific Abdominal Aortic Aneurysm Models. MS Thesis, Oregon State University, Corvallis, OR (2008).

  28. Fung Y-C (1981) Biomechanics: Mechanical Properties of Living Tissue. Springer-Verlag, New York, NY

    Book  Google Scholar 

  29. Park JB, Santos JM, Hargreaves BA et al (2005) Rapid Measurement of Renal Artery Blood Flow With Ungated Spiral Phase-Contrast MRI. Journal of Magnetic Resonance Imaging 21:590–595

    Article  Google Scholar 

  30. Sommer G, Corrigan G, Fredrickson J et al (1998) Renal Blood Flow: Measurement in Vivo With Rapid Spiral MR Imaging. Radiology 208:729–734

    Article  Google Scholar 

  31. Khodarahmi I, Shakeri M, Kotys-Traughber M, Fischer S, Sharp MK, Amini AA (2014) In Vitro Validation of Flow Measurement With Phase Contrast MRI at 3 Tesla Using Stereoscopic Particle Image Velocimetry and Stereoscopic Particle Image Velocimetry-Based Computational Fluid Dynamics. Journal of Magnetic Resonance Imaging 39:1477–1485

    Article  Google Scholar 

  32. Bluth EI, Murphey SM, Hollier LH, Sullivan MA (1990) Color Flow Doppler in the Evaluation of Aortic Aneurysms. International Angiology 9:8–10

    Google Scholar 

  33. Asbury CL, Ruberti JW, Bluth EI, Peattie RA (1995) Experimental Investigation of Steady Flow in Rigid Models of Abdominal Aortic Aneurysms. Annals of Biomedical Engineering 23:29–39

    Article  Google Scholar 

  34. Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition. Journal of Biomechanical Engineering 118:280–286

    Article  Google Scholar 

  35. Feller KJ, Atkinson SJ, Peattie RA (2001) Quantification of Flow Stability in Patient-Based Models of Abdominal Aortic Aneurysms. ASME-BED 50:753–754

    Google Scholar 

  36. Peattie RA, Riehle TJ, Bluth EI (2004) Pulsatile Flow in Fusiform Models of Abdominal Aortic Aneurysms: Flow Fields, Velocity Patterns and Flow-Induced Wall Stresses. Journal of Biomechanical Engineering 126:438–446

    Article  Google Scholar 

  37. Khanafer KM, Bull JL, Upchurch GR Jr, Berguer R (2007) Turbulence Significantly Increases Pressure and Fluid Shear Stress in an Aortic Aneurysm Model Under Resting and Exercise Flow Conditions. Annals of Vascular Surgery 21:67–74

    Article  Google Scholar 

  38. Anton R, Chen C-Y, Hung M-Y, Finol EA, Pekkan K (2015) Experimental and Computational Investigation of the Patient-Specific Abdominal Aortic Aneurysm Pressure Field. Computer Methods in Biomechanics and Biomedical Engineering 18:981–992

    Article  Google Scholar 

  39. Swillens A, Lanoye L, De Backer J et al (2008) Effect of an Abdominal Aortic Aneurysm on Wave Reflection in the Aorta. IEEE Transactions on Biomedical Engineering 55:1602–1611

    Article  Google Scholar 

  40. Deplano V, Knapp Y, Bailly L, Bertrand E (2014) Flow of a Blood Analogue Fluid in a Compliant Abdominal Aortic Aneurysm Model: Experimental Modelling. Journal of Biomechanics 47:1262–1269

    Article  Google Scholar 

  41. O’Brien T, Morris L, O’Donnell M, Walsh M, McGloughlin T (2005) Injection-Moulded Models of Major and Minor Arteries: The Variability of Model Wall Thickness Owing to Casting Technique. Proceedings of the Institution of Mechanical Engineers: Part H 219:381–386

    Article  Google Scholar 

  42. Doyle BJ, Morris LG, Callanan A, Kelly P, Vorp DA, McGloughlin TM (2008) 3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model. Journal of Biomechanical Engineering 130:034501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Peattie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peattie, R.A., Golden, E., Nomoto, R.S. et al. A Technique for Comparing Wall Pressure Distributions in Steady Flow Through Rigid Versus Flexible Patient-based Abdominal Aortic Aneurysm Phantoms. Exp Tech 40, 1187–1201 (2016). https://doi.org/10.1007/s40799-016-0119-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-016-0119-4

Keywords

Navigation