Skip to main content

Advertisement

Log in

Evaluation and Treatment of Pediatric Calcium Disorders

  • Pediatric Nephrology (BP Dixon and E Nehus, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

In this review we revisit normal calcium physiology and define hypo- and hypercalcemia in children. We also provide a physiology-based approach for diagnosis of pediatric calcium disorders with treatment recommendations.

Recent findings

Our understanding of genetics and the intricacies of human physiology continues to improve as does our ability to identify causative mutations and uncover the mechanisms underlying disorders of calcium. Calcium homeostasis remains integral to many processes throughout the body and is maintained by a complex interplay of the gut, bone, and kidney. Discovery of the calcium sensing receptor and its control of parathyroid hormone secretion has further enriched our understanding, and recent studies have further elucidated regulation of renal calcium handling.

Summary

Hyper- and hypocalcemia remain physiologically important electrolyte derangement with short- and long-term sequela for children. Correct diagnosis of the underlying etiology of these disorders remains central to proper treatment. Newer drugs have enhanced our ability to treat these disorders, most specifically hypercalcemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kumar R. Calcium metabolism. In: SG JHR, Klahr S, editors. The principles and practice of nephrology. 2nd ed. St. Louis, MO: Mosby-Year Book; 1995. p. 964–71.

    Google Scholar 

  2. Zhou P, Markowitz M. Hypocalcemia in infants and children. Pediatr Rev. 2009;30:190–2. https://doi.org/10.1542/pir.30-5-190.

    Article  PubMed  Google Scholar 

  3. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10:1257–72. https://doi.org/10.2215/CJN.09750913.

    Article  CAS  PubMed  Google Scholar 

  4. Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010;5(Suppl 1):S23–30. https://doi.org/10.2215/CJN.05910809.

    Article  CAS  PubMed  Google Scholar 

  5. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21:319–29. https://doi.org/10.1016/j.chembiol.2013.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammami MM, Yusuf A. Differential effects of vitamin D2 and D3 supplements on 25-hydroxyvitamin D level are dose, sex, and time dependent: a randomized controlled trial. BMC Endocr Disord. 2017;17:12. https://doi.org/10.1186/s12902-017-0163-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nigwekar SU, Bhan I, Thadhani R. Ergocalciferol and cholecalciferol in CKD. Am J Kidney Dis. 2012;60:139–56. https://doi.org/10.1053/j.ajkd.2011.12.035.

    Article  CAS  PubMed  Google Scholar 

  8. Hewison M, Zehnder D, Bland R, Stewart PM. 1alpha-Hydroxylase and the action of vitamin D. J Mol Endocrinol. 2000;25:141–8. https://doi.org/10.1677/jme.0.0250141.

    Article  CAS  PubMed  Google Scholar 

  9. Dusso AS, Brown AJ. Slatopolsky E: Vitamin D. Am J Physiol Renal Physiol. 2005;289:F8–28. https://doi.org/10.1152/ajprenal.00336.2004.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar R. Calcium transport in epithelial cells of the intestine and kidney. J Cell Biochem. 1995;57:392–8. https://doi.org/10.1002/jcb.240570304.

    Article  CAS  PubMed  Google Scholar 

  11. Keller J, Schinke T. The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteoporos Int. 2013;24:2737–48. https://doi.org/10.1007/s00198-013-2335-4.

    Article  CAS  PubMed  Google Scholar 

  12. Blaine J, Chonchol M, Levi M. Correction. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10:1886–7. https://doi.org/10.2215/CJN.08840815.

    Article  CAS  PubMed  Google Scholar 

  13. Lambers TT, Bindels RJ, Hoenderop JG. Coordinated control of renal Ca2+ handling. Kidney Int. 2006;69:650–4. https://doi.org/10.1038/sj.ki.5000169.

    Article  CAS  PubMed  Google Scholar 

  14. Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol. 2010;298:F485–99. https://doi.org/10.1152/ajprenal.00608.2009.

    Article  CAS  PubMed  Google Scholar 

  15. Toka HR, Al-Romaih K, Koshy JM, DiBartolo S, Kos CH, Quinn SJ, et al. Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria. J Am Soc Nephrol. 2012;23:1879–90. https://doi.org/10.1681/ASN.2012030323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoenderop JG, Nilius B, Bindels RJ. Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol. 2002;64:529–49. https://doi.org/10.1146/annurev.physiol.64.081501.155921.

    Article  CAS  PubMed  Google Scholar 

  17. Mensenkamp AR, Hoenderop JG, Bindels RJ. Recent advances in renal tubular calcium reabsorption. Curr Opin Nephrol Hypertens. 2006;15:524–9. https://doi.org/10.1097/01.mnh.0000242179.38739.fb.

    Article  CAS  PubMed  Google Scholar 

  18. Hendy GN, D'Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2000;16:281–96. https://doi.org/10.1002/1098-1004(200010)16:4<281::AID-HUMU1>3.0.CO;2-A.

    Article  CAS  PubMed  Google Scholar 

  19. Styne D: Pediatric Endocrinology: a clinical handbook Springer, 2016

    Book  Google Scholar 

  20. Moe SM. Disorders involving calcium, phosphorus, and magnesium. Prim Care. 2008;35:215–37,v-vi. https://doi.org/10.1016/j.pop.2008.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hoorn EJ, Zietse R. Disorders of calcium and magnesium balance: a physiology-based approach. Pediatr Nephrol. 2013;28:1195–206. https://doi.org/10.1007/s00467-012-2350-2.

    Article  PubMed  Google Scholar 

  22. Bazydlo L, Needham M, Harris N. Calcium, magnesium, and phosphate. Lab Medicine. 2014;45:44–50. https://doi.org/10.1309/LMGLMZ8CIYMFNOGX.

    Article  Google Scholar 

  23. Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev. 1995;75:429–71. https://doi.org/10.1152/physrev.1995.75.3.429.

    Article  CAS  PubMed  Google Scholar 

  24. Cole DE, Janicic N, Salisbury SR, Hendy GN. Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet. 1997;71:202–10. https://doi.org/10.1002/(sici)1096-8628(19970808)71:2<202::aid-ajmg16>3.0.co;2-i.

    Article  CAS  PubMed  Google Scholar 

  25. Obermannova B, Sumnik Z, Dusatkova P, Cinek O, Grant M, Lebl J, et al. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study. Eur J Endocrinol. 2016;174:K1–K11. https://doi.org/10.1530/EJE-15-1216.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JH, Shin YL, Yang S, Cheon CK, Cho JH, Lee BH, et al. Diverse genetic aetiologies and clinical outcomes of paediatric hypoparathyroidism. Clin Endocrinol (Oxf). 2015;83:790–6. https://doi.org/10.1111/cen.12944.

    Article  CAS  Google Scholar 

  27. Vetter T, Lohse MJ. Magnesium and the parathyroid. Curr Opin Nephrol Hypertens. 2002;11:403–10. https://doi.org/10.1097/00041552-200207000-00006.

    Article  PubMed  Google Scholar 

  28. Rodríguez-Ortiz ME, Canalejo A, Herencia C, Martínez-Moreno JM, Peralta-Ramírez A, Perez-Martinez P, et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol Dial Transplant. 2014;29:282–9. https://doi.org/10.1093/ndt/gft400.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar R, Thompson JR. The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol. 2011;22:216–24. https://doi.org/10.1681/ASN.2010020186.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Azem H, Khan AA. Hypoparathyroidism. Best Pract Res Clin Endocrinol Metab. 2012;26:517–22. https://doi.org/10.1016/j.beem.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  31. De Sanctis V, Soliman A, Fiscina B. Hypoparathyroidism: from diagnosis to treatment. Curr Opin Endocrinol Diabetes Obes. 2012;19:435–42. https://doi.org/10.1097/MED.0b013e3283591502.

    Article  CAS  PubMed  Google Scholar 

  32. Brown EM. Anti-parathyroid and anti-calcium sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol Metab Clin North Am. 2009;38:437–45,x. https://doi.org/10.1016/j.ecl.2009.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imel E, Carpenter T. Pediatric endocrinology. In: Springer International Publishing AG, part of Springer Nature; 2018.

    Google Scholar 

  34. Elder CJ, Bishop NJ. Rickets. Lancet. 2014;383:1665–76. https://doi.org/10.1016/S0140-6736(13)61650-5.

    Article  PubMed  Google Scholar 

  35. Lee JA, Hwang JS, Hwang IT, Kim DH, Seo JH, Lim JS. Low vitamin D levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr Hematol Oncol. 2015;32:99–108. https://doi.org/10.3109/08880018.2014.983623.

    Article  CAS  PubMed  Google Scholar 

  36. Verrotti A, Coppola G, Parisi P, Mohn A, Chiarelli F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010;112:1–10. https://doi.org/10.1016/j.clineuro.2009.10.011.

    Article  PubMed  Google Scholar 

  37. de Francisco AL. Secondary hyperparathyroidism: review of the disease and its treatment. Clin Ther. 2004;26:1976–93. https://doi.org/10.1016/j.clinthera.2004.12.011.

    Article  PubMed  Google Scholar 

  38. Wesseling K, Bakkaloglu S, Salusky I. Chronic kidney disease mineral and bone disorder in children. Pediatr Nephrol. 2008;23:195–207. https://doi.org/10.1007/s00467-007-0671-3.

    Article  PubMed  Google Scholar 

  39. Adegbite NS, Xu M, Kaplan FS, Shore EM, Pignolo RJ. Diagnostic and mutational spectrum of progressive osseous heteroplasia (POH) and other forms of GNAS-based heterotopic ossification. Am J Med Genet A. 2008;146A:1788–96. https://doi.org/10.1002/ajmg.a.32346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim SY. Endocrine and metabolic emergencies in children: hypocalcemia, hypoglycemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis. Ann Pediatr Endocrinol Metab. 2015;20:179–86. https://doi.org/10.6065/apem.2015.20.4.179.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cusano N. Hypoparathyroidism: A Clinical Casebook: Springer; 2020.

  42. Bellazzini MA, Howes DS. Pediatric hypocalcemic seizures: a case of rickets. J Emerg Med. 2005;28:161–4. https://doi.org/10.1016/j.jemermed.2004.09.007.

    Article  PubMed  Google Scholar 

  43. Lexicomp Online, Pediatric and Neonatal Lexi-Drugs Online, Hudson, Ohio: UpToDate, Inc.; 2013; April 15, 2013.,

  44. Abrams SA. Dietary guidelines for calcium and vitamin D: a new era. Pediatrics. 2011;127:566–8. https://doi.org/10.1542/peds.2010-3576.

    Article  PubMed  Google Scholar 

  45. Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res. 2017;32:2157–70. https://doi.org/10.1002/jbmr.3296.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lietman SA, Germain-Lee EL, Levine MA. Hypercalcemia in children and adolescents. Curr Opin Pediatr. 2010;22:508–15. https://doi.org/10.1097/MOP.0b013e32833b7c23.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stålberg P, Carling T. Familial parathyroid tumors: diagnosis and management. World J Surg. 2009;33:2234–43. https://doi.org/10.1007/s00268-009-9924-6.

    Article  PubMed  Google Scholar 

  48. Bushinsky DA, Monk RD. Electrolyte quintet: calcium. Lancet. 1998;352:306–11. https://doi.org/10.1016/s0140-6736(97)12331-5.

    Article  CAS  PubMed  Google Scholar 

  49. Loughead JL, Mughal Z, Mimouni F, Tsang RC, Oestreich AE. Spectrum and natural history of congenital hyperparathyroidism secondary to maternal hypocalcemia. Am J Perinatol. 1990;7:350–5. https://doi.org/10.1055/s-2007-999521.

    Article  CAS  PubMed  Google Scholar 

  50. Heath H, Jackson CE, Otterud B, Leppert MF. Genetic linkage analysis in familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. Am J Hum Genet. 1993;53:193–200.

    PubMed  PubMed Central  Google Scholar 

  51. Chou YH, Pollak MR, Brandi ML, Toss G, Arnqvist H, Atkinson AB, et al. Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet. 1995;56:1075–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lietman SA, Tenenbaum-Rakover Y, Jap TS, Yi-Chi W, De-Ming Y, Ding C, et al. A novel loss-of-function mutation, Gln459Arg, of the calcium-sensing receptor gene associated with apparent autosomal recessive inheritance of familial hypocalciuric hypercalcemia. J Clin Endocrinol Metab. 2009;94:4372–9. https://doi.org/10.1210/jc.2008-2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Obermannova B, Banghova K, Sumník Z, Dvorakova HM, Betka J, Fencl F, et al. Unusually severe phenotype of neonatal primary hyperparathyroidism due to a heterozygous inactivating mutation in the CASR gene. Eur J Pediatr. 2009;168:569–73. https://doi.org/10.1007/s00431-008-0794-y.

    Article  PubMed  Google Scholar 

  54. Powell BR, Blank E, Benda G, Buist NR. Neonatal hyperparathyroidism and skeletal demineralization in an infant with familial hypocalciuric hypercalcemia. Pediatrics. 1993;91:144–5.

    CAS  PubMed  Google Scholar 

  55. Wieneke JA, Smith A. Parathyroid adenoma. Head Neck Pathol. 2008;2:305–8. https://doi.org/10.1007/s12105-008-0088-8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yuen NK, Ananthakrishnan S, Campbell MJ. Hyperparathyroidism of Renal Disease. Perm J. 2016;20:15–127. https://doi.org/10.7812/TPP/15-127.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Thakker RV. Genetics of parathyroid tumours. J Intern Med. 2016;280:574–83. https://doi.org/10.1111/joim.12523.

    Article  CAS  PubMed  Google Scholar 

  58. Burden AD, Krafchik BR. Subcutaneous fat necrosis of the newborn: a review of 11 cases. Pediatr Dermatol. 1999;16:384–7. https://doi.org/10.1046/j.1525-1470.1999.00101.x.

    Article  CAS  PubMed  Google Scholar 

  59. Cagle AP, Waguespack SG, Buckingham BA, Shankar RR, Dimeglio LA. Severe infantile hypercalcemia associated with Williams syndrome successfully treated with intravenously administered pamidronate. Pediatrics. 2004;114:1091–5. https://doi.org/10.1542/peds.2003-1146-L.

    Article  PubMed  Google Scholar 

  60. Meyer-Lindenberg A, Mervis CB, Berman KF. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci. 2006;7:380–93. https://doi.org/10.1038/nrn1906.

    Article  CAS  PubMed  Google Scholar 

  61. Bishop N. Clinical management of hypophosphatasia. Clin Cases Miner Bone Metab. 2015;12:170–3. https://doi.org/10.11138/ccmbm/2015.12.2.170.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone. 2015;75:229–39. https://doi.org/10.1016/j.bone.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  63. De Paolis E, Scaglione GL, De Bonis M, Minucci A, Capoluongo E. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype. Clin Chem Lab Med. 2019;57:1650–67. https://doi.org/10.1515/cclm-2018-1208.

    Article  CAS  PubMed  Google Scholar 

  64. Kurnaz E, Savaş Erdeve Ş, Çetinkaya S, Aycan Z. Rare cause of infantile hypercalcemia: a novel mutation in the SLC34A1 gene. Horm Res Paediatr. 2019;91:278–84. https://doi.org/10.1159/000492899.

    Article  CAS  PubMed  Google Scholar 

  65. Distelmaier F, Herebian D, Atasever C, Beck-Woedl S, Mayatepek E, Strom TM, et al. Blue diaper syndrome and. Pediatrics. 2018;141:S501–5. https://doi.org/10.1542/peds.2017-0548.

    Article  PubMed  Google Scholar 

  66. Blankfield A. A brief historic overview of clinical disorders associated with tryptophan: the relevance to chronic fatigue syndrome (CFS) and fibromyalgia (FM). Int J Tryptophan Res. 2012;5:27–32. https://doi.org/10.4137/IJTR.S10085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Drummond KN, Michael AF, Ulstrom RA, Good RA. The blue diaper syndrome: familial hypercalcemia with nephrocalcinosis and indicanuria; a new familial disease, with definition of the metabolic abnormality. Am J Med. 1964;37:928–48. https://doi.org/10.1016/0002-9343(64)90134-2.

    Article  CAS  PubMed  Google Scholar 

  68. Saarela T, Similä S, Koivisto M. Hypercalcemia and nephrocalcinosis in patients with congenital lactase deficiency. J Pediatr. 1995;127:920–3. https://doi.org/10.1016/s0022-3476(95)70028-5.

    Article  CAS  PubMed  Google Scholar 

  69. Belmont JW, Reid B, Taylor W, Baker SS, Moore WH, Morriss MC, et al. Congenital sucrase-isomaltase deficiency presenting with failure to thrive, hypercalcemia, and nephrocalcinosis. BMC Pediatr. 2002;2:4. https://doi.org/10.1186/1471-2431-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Amirlak I, Dawson KP. Bartter syndrome: an overview. QJM. 2000;93:207–15. https://doi.org/10.1093/qjmed/93.4.207.

    Article  CAS  PubMed  Google Scholar 

  71. Bettinelli A, Ciarmatori S, Cesareo L, Tedeschi S, Ruffa G, Appiani AC, et al. Phenotypic variability in Bartter syndrome type I. Pediatr Nephrol. 2000;14:940–5. https://doi.org/10.1007/pl00013418.

    Article  CAS  PubMed  Google Scholar 

  72. Vilain E, Le Merrer M, Lecointre C, Desangles F, Kay MA, Maroteaux P, et al. IMAGe, a new clinical association of intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies. J Clin Endocrinol Metab. 1999;84:4335–40. https://doi.org/10.1210/jcem.84.12.6186.

    Article  CAS  PubMed  Google Scholar 

  73. Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, Płudowski P, Jones G. Vitamin D toxicity-a clinical perspective. Front Endocrinol (Lausanne). 2018;9:550. https://doi.org/10.3389/fendo.2018.00550.

    Article  Google Scholar 

  74. Kelly A, Levine M: Disorders of calcium, phosphate, parathyroid hormone and vitamin D. ,

  75. Vanstone MB, Oberfield SE, Shader L, Ardeshirpour L, Carpenter TO. Hypercalcemia in children receiving pharmacologic doses of vitamin D. Pediatrics. 2012;129:e1060–3. https://doi.org/10.1542/peds.2011-1663.

    Article  PubMed  Google Scholar 

  76. Monkawa T, Yoshida T, Hayashi M, Saruta T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int. 2000;58:559–68. https://doi.org/10.1046/j.1523-1755.2000.00202.x.

    Article  CAS  PubMed  Google Scholar 

  77. Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med. 1982;306:1136–40. https://doi.org/10.1056/NEJM198205133061903.

    Article  CAS  PubMed  Google Scholar 

  78. Trehan A, Cheetham T, Bailey S. Hypercalcemia in acute lymphoblastic leukemia: an overview. J Pediatr Hematol Oncol. 2009;31:424–7. https://doi.org/10.1097/MPH.0b013e3181a1c12b.

    Article  PubMed  Google Scholar 

  79. Hawkes CP, Levine MA. Ketotic hypercalcemia: a case series and description of a novel entity. J Clin Endocrinol Metab. 2014;99:1531–6. https://doi.org/10.1210/jc.2013-4275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frame B, Jackson CE, Reynolds WA, Umphrey JE. Hypercalcemia and skeletal effects in chronic hypervitaminosis A. Ann Intern Med. 1974;80:44–8. https://doi.org/10.7326/0003-4819-80-1-44.

    Article  CAS  PubMed  Google Scholar 

  81. McHenry CR, Lee K. Lithium therapy and disorders of the parathyroid glands. Endocr Pract. 1996;2:103–9. https://doi.org/10.4158/EP.2.2.103.

    Article  CAS  PubMed  Google Scholar 

  82. Schipani E, Langman CB, Parfitt AM, Jensen GS, Kikuchi S, Kooh SW, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen's metaphyseal chondrodysplasia. N Engl J Med. 1996;335:708–14. https://doi.org/10.1056/NEJM199609053351004.

    Article  CAS  PubMed  Google Scholar 

  83. El Saleeby CM, Grottkau BE, Friedmann AM, Westra SJ, Sohani AR. Case records of the Massachusetts General Hospital. Case 4-2011. A 4-year-old boy with back pain and hypercalcemia. N Engl J Med. 2011;364:552–62. https://doi.org/10.1056/NEJMcpc1011318.

    Article  PubMed  Google Scholar 

  84. Davies JH, Shaw NJ. Investigation and management of hypercalcaemia in children. Arch Dis Child. 2012;97:533–8. https://doi.org/10.1136/archdischild-2011-301284.

    Article  PubMed  Google Scholar 

  85. Roelofs AJ, Thompson K, Ebetino FH, Rogers MJ, Coxon FP. Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des. 2010;16:2950–60. https://doi.org/10.2174/138161210793563635.

    Article  CAS  PubMed  Google Scholar 

  86. Bowden SA, Mahan JD. Zoledronic acid in pediatric metabolic bone disorders. Transl Pediatr. 2017;6:256–68. https://doi.org/10.21037/tp.2017.09.10.

    Article  PubMed  PubMed Central  Google Scholar 

  87. AlDhalaan NA, BaQais A, Al-Omar A. Medication-related osteonecrosis of the jaw: a review. Cureus. 2020;12:e6944. https://doi.org/10.7759/cureus.6944.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sindhar S, Lugo M, Levin MD, Danback JR, Brink BD, Yu E, et al. Hypercalcemia in patients with Williams-Beuren syndrome. J Pediatr. 2016;178:254-260.e254. https://doi.org/10.1016/j.jpeds.2016.08.027.

    Article  CAS  Google Scholar 

  89. Burke JF, Chen H, Gosain A. Parathyroid conditions in childhood. Semin Pediatr Surg. 2014;23:66–70. https://doi.org/10.1053/j.sempedsurg.2014.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nagano N. Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Pharmacol Ther. 2006;109:339–65. https://doi.org/10.1016/j.pharmthera.2005.06.019.

    Article  CAS  PubMed  Google Scholar 

  91. Nagano N. Basic and clinical aspects of calcimimetics. Discovery and development of calcimimetics. Clin Calcium. 2008;18:37–44 CliCa08013744.

    CAS  PubMed  Google Scholar 

  92. Whyte MP, Madson KL, Phillips D, Reeves AL, McAlister WH, Yakimoski A, et al. Asfotase alfa therapy for children with hypophosphatasia. JCI Insight. 2016;1:e85971. https://doi.org/10.1172/jci.insight.85971.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Whyte MP, Simmons JH, Moseley S, Fujita KP, Bishop N, Salman NJ, et al. Asfotase alfa for infants and young children with hypophosphatasia: 7 year outcomes of a single-arm, open-label, phase 2 extension trial. Lancet Diabetes Endocrinol. 2019;7:93–105. https://doi.org/10.1016/S2213-8587(18)30307-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Kusumi MD, MS.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Nephrology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusumi, K., Narla, D. & Mahan, J.D. Evaluation and Treatment of Pediatric Calcium Disorders. Curr Treat Options Peds 7, 60–81 (2021). https://doi.org/10.1007/s40746-021-00219-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-021-00219-6

Keywords

Navigation