Skip to main content

Advertisement

Log in

Tribocorrosion of Additively Manufactured (AM-ed) Metallic Biomaterials in Hip Implants : Review on Methodology and Post Treatments

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is an original manufacturing technique in which a part can be constructed layer by layer. The AM techniques help in constructing intricate structures that serve the proper functioning of the biomedical metallic hip implant. The latter is present in a biological aggressive environment and is prone to various dynamic stresses. Thus, the dominant wear mechanism in the metallic hip implant is tribocorrosion. During tribocorrosion, the interaction between various corrosion and wear mechanisms takes place. Certain protocols are followed to properly investigate the tribocorrosion mechanism and they are: ASTMG119 and UNE112086. An enormous number of studies were done on the tribocorrosion of conventionally processed metallic biomaterials. Nonetheless, a limited number of studies pedantically assess the tribocorrosion of AM-ed metallic biomaterials. In this review, the available protocols to investigate the tribocorrosion of metallic biomaterials are elaborated. Moreover, the state of art of the tribocorrosion of metallic AM-ed biomaterials deployed in biomedical hip implants is spanned. Finally, the potential post-treatments applied to ameliorate the tribocorrosion resistance of AM-ed metallic biomaterials utilized in hip implants are classified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Chemkhi M, Djouda JM, Bouaziz MA, Kauffmann J, Hild F, Retraint D (2021) Effects of mechanical post-treatments on additive manufactured 17–4ph stainless steel produced by bound powder extrusion. Procedia CIRP 104:957–961

    Article  Google Scholar 

  2. Vunnam S, Saboo A, Sudbrack C, Starr TL (2019) Effect of powder chemical composition on the as-built microstructure of 17–4 ph stainless steel processed by selective laser melting. Addit Manuf 30:100876

    CAS  Google Scholar 

  3. Gratton A (2012) Comparison of mechanical, metallurgical properties of 17-4ph stainless steel between direct metal laser sintering (DMLs) and traditional manufacturing methods. 2012 NCUR

  4. World’s largest 3d metal printers (2022) https://www.relativityspace.com/stargate

  5. Mutlu I, Oktay E (2013) Characterization of 17–4 ph stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng: C 33(3):1125–1131

    Article  CAS  Google Scholar 

  6. Jevremović D, Kojić V, Bogdanović G, Puškar T, Eggbeer D, Thomas D, Williams R (2011) A selective laser melted Co-Cr alloy used for the rapid manufacture of removable partial denture frameworks: initial screening of biocompatibility. J Serbian Chem Soc 76(1):43–52

    Article  Google Scholar 

  7. Ahangar P, Cooke ME, Weber MH, Rosenzweig DH (2019) Current biomedical applications of 3d printing and additive manufacturing. Appl Sci 9(8):1713

    Article  CAS  Google Scholar 

  8. Jaisingh Sheoran Ankita, Kumar H, Arora PK, Moona G (2020) Bio-medical applications of additive manufacturing: a review. Procedia Manuf 51:663–670

    Article  Google Scholar 

  9. Harun WSW, Manam NS, Kamariah MSIN, Sharif S, Zulkifly AH, Ahmad I, Miura H (2018) A review of powdered additive manufacturing techniques for ti-6al-4v biomedical applications. Powder Technol 331:74–97

    Article  CAS  Google Scholar 

  10. Deng L, Wang S, Wang P, Kühn U, Pauly S (2018) Selective laser melting of a ti-based bulk metallic glass. Mater Lett 212:346–349

    Article  CAS  Google Scholar 

  11. Zhang C, Li X, Liu S-Q, Liu H, Long-Jiang Y, Liu L (2019) 3d printing of Zr-based bulk metallic glasses and components for potential biomedical applications. J Alloys Compd 790:963–973

    Article  CAS  Google Scholar 

  12. Fischer M, Laheurte P, Acquier P, Joguet D, Peltier L, Petithory T, Anselme K, Mille P (2017) Synthesis and characterization of Ti-27.5 Nb alloy made by clad® additive manufacturing process for biomedical applications. Mater Sci Eng: C 75:341–348

    Article  CAS  Google Scholar 

  13. Attar H, Ehtemam-Haghighi S, Soro N, Kent D, Dargusch MS (2020) Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: advantages, challenges and opinion for future development. J Alloys Compd 827:154263

    Article  CAS  Google Scholar 

  14. Acharya S, Soni R, Suwas S, Chatterjee K (2021) Additive manufacturing of Co-Cr alloys for biomedical applications: a concise review. J Mater Res 36:3746–3760

    Article  CAS  Google Scholar 

  15. Dadbakhsh S, Speirs M, Van Humbeeck J, Kruth J-P (2016) Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. MRS Bull 41(10):765–774

    Article  CAS  Google Scholar 

  16. Lodhi MJK, Deen KM, Greenlee-Wacker MC, Haider W (2019) Additively manufactured 316l stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit Manuf 27:8–19

    CAS  Google Scholar 

  17. Chehrehrazi S (2019) Influence of stress ratio on the torsional fatigue behaviour of 17-4PH stainless steel used for biomedical applications. PhD thesis, Wien

  18. Parthasarathy J, Starly B, Raman S (2011) A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Processes 13(2):160–170

    Article  Google Scholar 

  19. Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16(2):57–67

    CAS  Google Scholar 

  20. Cross MJ, Spycher J (2008) Cementless fixation techniques in joint replacement. Joint replacement technology. Elsevier, Amsterdam, pp 190–211

    Chapter  Google Scholar 

  21. Capone A, Congia S, Civinini R, Marongiu G (2017) Periprosthetic fractures: epidemiology and current treatment. Clin Cases Miner Bone Metab 14(2):189

    Article  Google Scholar 

  22. Huiskes R (1993) Stress shielding and bone resorption in THA: clinical versus computer-simulation studies. Acta Orthop Belg 59(Suppl 1):118–129

    Google Scholar 

  23. Hench L, Jones J (2005) Biomaterials, artificial organs and tissue engineering. Elsevier, Amsterdam

    Book  Google Scholar 

  24. Hench LL (2005) 13-Joint replacement. In: Hench LL, Jones JR (eds) Biomaterials, artificial organs and tissue engineering. Woodhead Publishing Series in Biomaterials, Woodhead Publishing, pp 129–141

    Chapter  Google Scholar 

  25. Huiskes R, Weinans H, Van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    Article  Google Scholar 

  26. Shamieh LLD, Popa NM, Milodin NL, Gheorghiu D, Comsa S (2019) The importance of optimization of lattice structures for biomedical applications. Revista de Tehnologii Neconventionale 23(3):74–79

    Google Scholar 

  27. Eldesouky I, Harrysson O, West H, Elhofy H (2017) Electron beam melted scaffolds for orthopedic applications. Addit Manuf 17:169–175

    CAS  Google Scholar 

  28. Stendal J, Fergani O, Yamaguchi H, Espallargas N (2018) A comparative tribocorrosion study of additive manufactured and wrought 316l stainless steel in simulated body fluids. J Bio Tribo Corros 4(1):1–10

    Article  Google Scholar 

  29. Ryu JJ, Shrotriya P (2013) Synergistic mechanisms of bio-tribocorrosion in medical implants. Bio-tribocorrosion in biomaterials and medical implants. Elsevier, Amsterdam, pp 25–44

    Chapter  Google Scholar 

  30. Akdogan G (2019) Corrosion residue debris left by implant materials to the patient’s body. Am J Biomed Sci Res 6(3):176–178

    Article  Google Scholar 

  31. Total hip replacement-orthoinfo-aaos. https://orthoinfo.aaos.org/en/treatment/total-hip-replacement

  32. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the united states from 2005 to 2030. JBJS 89(4):780–785

    Article  Google Scholar 

  33. Ødegaard KS, Torgersen J, Elverum CW (2020) Structural and biomedical properties of common additively manufactured biomaterials: a concise review. Metals 10(12):1677

    Article  Google Scholar 

  34. Gill IPS, Webb J, Sloan K, Beaver RJ (2012) Corrosion at the neck-stem junction as a cause of metal ion release and pseudotumour formation. J Bone Joint Surg Br 94(7):895–900

    Article  CAS  Google Scholar 

  35. Shittu J, Sadeghilaridjani M, Pole M, Muskeri S, Ren J, Liu Y, Tahoun I, Arora H, Chen W, Dahotre N et al (2021) Tribo-corrosion response of additively manufactured high-entropy alloy. NPJ Mater Degrad 5(1):1–8

    Article  Google Scholar 

  36. Mathew MT, Srinivasa PP, Pourzal R, Fischer A, Wimmer MA (2009) Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol. https://doi.org/10.1155/2009/250986

    Article  Google Scholar 

  37. Wood Robert JK (2007) Tribo-corrosion of coatings: a review. J Phys D: Appl Phys 40(18):5502

    Article  Google Scholar 

  38. Taufiqurrakhman M, Neville A, Bryant MG (2021) The effect of protein structure and concentration on tribocorrosion and film formation on cocrmo alloys. J Bio Tribo Corros 7:1–18

    Article  Google Scholar 

  39. Buciumeanu M, Bagheri A, Shamsaei N, Thompson SM, Silva FS, Henriques B (2018) Tribocorrosion behavior of additive manufactured Ti-6Al-4V biomedical alloy. Tribol Int 119:381–388

    Article  CAS  Google Scholar 

  40. Yan Y, Neville A (2013) Bio-tribocorrosion: surface interactions in total joint replacement (TJR). Bio-tribocorrosion in biomaterials and medical implants. Elsevier, Amsterdam, pp 309–340

    Chapter  Google Scholar 

  41. Zhao G-H, Aune RE, Espallargas N (2016) Tribocorrosion studies of metallic biomaterials: the effect of plasma nitriding and DLC surface modifications. J Mech Behav Biomed Mater 63:100–114

    Article  CAS  Google Scholar 

  42. Malik A, Rouf S, Haq MIU, Raina A, Puerta APV, Sagbas B, Ruggiero A (2022) Tribo-corrosive behavior of additive manufactured parts for orthopaedic applications. J Orthop 34:49–60

    Article  Google Scholar 

  43. Sipek KT, Lyvers ME, Mathew MT (2018) Failure causes in total hip replacements: a review. Austin J Orthop Rheumatol 5:1064

    Google Scholar 

  44. Schaaff P (2004) The role of fretting damage in total hip arthroplasty with modular design hip joints-evaluation of retrieval studies and experimental simulation methods. J Appl Biomater Biomech 2(3):121–135

    CAS  Google Scholar 

  45. Vingsbo O, Söderberg S (1988) On fretting maps. Wear 126(2):131–147

    Article  CAS  Google Scholar 

  46. Vantadori S, Vázquez VJ, Zanichelli A, Carpinteri A, Luciano R (2022) Structural integrity of shot peened Ti6Al4V specimens under fretting fatigue. Int J Fract 234(1–2):45–55

    Article  CAS  Google Scholar 

  47. Oladokun A, Pettersson M, Bryant M, Engqvist H, Persson C, Hall R, Neville A (2015) Fretting of cocrmo and ti6al4v alloys in modular prostheses. Tribol Mater Surf Interfaces 9(4):165–173

    Article  CAS  Google Scholar 

  48. Neu RW (2011) Progress in standardization of fretting fatigue terminology and testing. Tribol Int 44(11):1371–1377

    Article  Google Scholar 

  49. Costa AI, Viana F, Toptan F, Geringer J (2021) Highly porous Ti as a bone substitute: triboelectrochemical characterization of highly porous Ti against Ti alloy under fretting-corrosion conditions. Corros Sci 190:109696

    Article  CAS  Google Scholar 

  50. Semetse L, Obadele BA, Raganya L, Geringer J, Olubambi PA (2019) Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum. J Mech Behav Biomed Mater 100:103392

    Article  CAS  Google Scholar 

  51. Feyzi M, Fallahnezhad K, Taylor M, Hashemi R (2022) An overview of the stability and fretting corrosion of microgrooved necks in the taper junction of hip implants. Materials 15(23):8396

    Article  CAS  Google Scholar 

  52. Gilbert JL, Buckley CA, Jacobs JJ (1993) In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice stress motion and alloy coupling. J Biomed Mater Res 27(12):1533–1544

    Article  CAS  Google Scholar 

  53. Bryant M (2013) Fretting-crevice corrosion of cemented metal on metal total hip replacements. University of Leeds, Leeds

    Google Scholar 

  54. Hallab NJ, Messina S, Skipor A, Jacobs JJ (2004) Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements. J Orthop Res 22(2):250–259

    Article  CAS  Google Scholar 

  55. Zajc J, Fokter SK (2022) Dual-modular stems for primary total hip arthroplasty. Encyclopedia 2(2):893–911

    Article  Google Scholar 

  56. Sin JR (2015) Investigation of the corrosion and tribocorrosion behaviour of metallic biomaterials. PhD thesis, Luleå tekniska universitet

  57. Sidaginamale RP, Joyce TJ, Bowsher JG, Lord JK, Avery PJ, Natu S, Nargol AVF, Langton DJ (2016) The clinical implications of metal debris release from the taper junctions and bearing surfaces of metal-on-metal hip arthroplasty: joint fluid and blood metal ion concentrations. Bone Joint J 98(7):925–933

    Article  Google Scholar 

  58. Liang Y, Ma M, Zhang F, Liu F, Lu T, Liu Z, Li Y (2021) Wireless microfluidic sensor for metal ion detection in water. ACS Omega 6(13):9302–9309

    Article  CAS  Google Scholar 

  59. Shittu J, Pole M, Cockerill I, Sadeghilaridjani M, Reddy LVK, Manivasagam G, Singh H, Grewal HS, Arora HS, Mukherjee S (2020) Biocompatible high entropy alloys with excellent degradation resistance in a simulated physiological environment. ACS Appl Bio Mater 3(12):8890–8900

    Article  CAS  Google Scholar 

  60. Alnajjar M (2019) Corrosion properties of 17-4 PH martensitic stainless steel obtained by additive manufacturing. PhD thesis, Lyon

  61. Huang W, Wang Z, Liu C, Yongmei Y (2015) Wear and electrochemical corrosion behavior of biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological solutions. J Bio Tribo Corros 1(1):1–10

    Article  Google Scholar 

  62. Wang L, Snihirova D, Deng M, Vaghefinazari B, Höche D, Lamaka SV, Zheludkevich ML (2022) Revealing physical interpretation of time constants in electrochemical impedance spectra of mg via tribo-eis measurements. Electrochim Acta 404:139582

    Article  CAS  Google Scholar 

  63. Basics of electrochemical impedance spectroscopy. https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/

  64. Magar HS, Hassan RYA, Mulchandani A (2021) Electrochemical impedance spectroscopy (eis): Principles, construction, and biosensing applications. Sensors 21(19):6578

    Article  CAS  Google Scholar 

  65. What is electrochemical impedance spectroscopy (eis)? (electrochemistry basics series). https://www.biologic.net/topics/what-is-eis/, Jun (2022)

  66. Nikitas D, Celis J-P, Pierre P, François W (2009) A methodology for the assessment of the tribocorrosion of passivating metallic materials. Lubr Sci 21(2):53–67

    Article  Google Scholar 

  67. López A, Bayón R, Pagano F, Igartua A, Arredondo A, Arana JL, González JJ (2015) Tribocorrosion behaviour of mooring high strength low alloy steels in synthetic seawater. Wear 338:1–10

    Article  Google Scholar 

  68. Standard guide for determining synergism between wear and corrosion. https://www.astm.org/g0119-09r21.html

  69. Stack MM, Rodling J, Mathew MT, Jawan H, Huang W, Park G, Hodge C (2010) Micro-abrasion-corrosion of a co-cr/uhmwpe couple in ringer’s solution: an approach to construction of mechanism and synergism maps for application to bio-implants. Wear 269(5–6):376–382

    Article  CAS  Google Scholar 

  70. Calculation of corrosion rate (2022) https://www.gamry.com/Framework%20Help/HTML5%20-%20Tripane%20-%20Audience%20A/Content/EFM/Introduction/Calculation%20of%20Corrosion%20Rate.htm

  71. Electrochemical kinetics of corrosion (2022) https://www.uobabylon.edu.iq/eprints/publication_12_18564_228.pdf

  72. Fuentes E, Alves S, López-Ortega A, Mendizabal L, de Viteri VS (2019) Advanced surface treatments on titanium and titanium alloys focused on electrochemical and physical technologies for biomedical applications. Biomaterial-supported tissue reconstruction or regeneration

  73. Zhang Y, Yin X, Wang J, Yan F (2014) Influence of microstructure evolution on tribocorrosion of 304ss in artificial seawater. Corros Sci 88:423–433

    Article  CAS  Google Scholar 

  74. López-Ortega A, Arana JL, Bayón R (2018) Tribocorrosion of passive materials: a review on test procedures and standards. Int J Corros 2018

  75. Xue Y, Yi H, Wang Z (2019) Tribocorrosion behavior of NiTi alloy as orthopedic implants in ringer’s simulated body fluid. Biomed Phys Eng Express 5(4):045002

    Article  Google Scholar 

  76. Wang Z, Huang W, Li Y, He H, Zhou Y, Zheng Z (2017) Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in ringer’s solution. Mater Sci Eng: C 76:1094–1102

    Article  CAS  Google Scholar 

  77. Licausi MP, Igual Muñoz A, Amigó Borrás V (2013) Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva. J Mech Behav Biomed Mater 20:137–148

    Article  CAS  Google Scholar 

  78. Xin L, Zhang D, Wei X, Aihua Y, Zhang J, Tamaddon M, Zhang J, Xuanhui Q, Liu C, Bo S (2020) The effect of cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants. Corros Sci 177:109007

    Article  Google Scholar 

  79. Neto MQ, Rainforth WM (2021) Effect of potential and microstructure on the tribocorrosion behaviour of beta and near beta Ti alloys II. J Bio Tribo Corros 7(4):1–12

    Article  Google Scholar 

  80. Farooqui MS (2017) An electrochemical and tribocorrosion study on austenitic high nitrogen steel in orthopedic applications. PhD thesis, University of Illinois at Chicago

  81. Ferreira DF, Almeida SMA, Soares RB, Juliani L, Bracarense AQ, Lins VDFC, Junqueira RMR (2019) Synergism between mechanical wear and corrosion on tribocorrosion of a titanium alloy in a ringer solution. J Mater Res Technol 8(2):1593–1600

    Article  CAS  Google Scholar 

  82. Sharma N, Singh G, Hegab H, Mia M, Batra NK (2019) Tribo-corrosion characterization of NiTiCu alloy for bio-implant applications. Mater Res Express 6(9):096526

    Article  CAS  Google Scholar 

  83. More NS, Diomidis N, Paul SN, Roy M, Mischler S (2011) Tribocorrosion behavior of \(\beta\) titanium alloys in physiological solutions containing synovial components. Mater Sci Eng: C 31(2):400–408

    Article  CAS  Google Scholar 

  84. Chávez J, Jimenez O, Olmos L, Farias I, Flores-Jimenez M, Suárez-Martínez R, Cabezas-Villa JL, Lemus-Ruiz J (2020) Tribocorrosion behavior of Ti64-xta alloys fabricated through powder metallurgy. Mater Lett 280:128590

    Article  Google Scholar 

  85. Borrás AD, Buch AR, Cardete AR, Navarro-Laboulais J, Munoz AI (2019) Chemo-mechanical effects on the tribocorrosion behavior of titanium/ceramic dental implant pairs in artificial saliva. Wear 426:162–170

    Article  Google Scholar 

  86. Radice S, Neto MQ, Fischer A, Wimmer MA (2021) Nickel-free high-nitrogen austenitic steel outperforms cocrmo alloy regarding tribocorrosion in simulated inflammatory synovial fluids. J Orthop Res®

  87. Sousa L, Alves AC, Guedes A, Toptan F (2021) Corrosion and tribocorrosion behaviour of Ti-B4C composites processed by conventional sintering and hot-pressing technique. J Alloys Compd 885:161109

    Article  CAS  Google Scholar 

  88. Correa DRN, Kuroda PAB, Grandini CR, Rocha LA, Oliveira FGM, Alves AC, Toptan F (2016) Tribocorrosion behavior of \(\beta\)-type ti-15zr-based alloys. Mater Lett 179:118–121

    Article  CAS  Google Scholar 

  89. Pina VG, Dalmau A, Devesa F, Amigó V, Muñoz AI (2015) Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. J Mech Behav Biomed Mater 46:59–68

    Article  CAS  Google Scholar 

  90. Espallargas N, Aune RE, Torres C, Papageorgiou N, Muñoz AI (2013) Bulk metallic glasses (BMG) for biomedical applications-a tribocorrosion investigation of Zr55Cu30Ni5Al10 in simulated body fluid. Wear 301(1–2):271–279

    Article  CAS  Google Scholar 

  91. Doni Z, Alves AC, Toptan F, Pinto AM, Rocha LA, Buciumeanu M, Palaghian L, Silva FS (2014) Tribocorrosion behaviour of hot pressed cocrmo- Al2O3 composites for biomedical applications. Tribol Mater Surf Interfaces 8(4):201–208

    Article  CAS  Google Scholar 

  92. Kosec T, Močnik P, Legat A (2014) The tribocorrosion behaviour of NiTi alloy. Appl Surf Sci 288:727–735

    Article  CAS  Google Scholar 

  93. Shivaram MJ, Arya SB, Nayak J, Panigrahi BB (2021) Tribocorrosion behaviour of biomedical porous Ti-20Nb-5Ag alloy in simulated body fluid. J Bio Tribo Corros 7(2):1–9

    Article  Google Scholar 

  94. Runa MJ, Mathew MT, Rocha LA (2013) Tribocorrosion response of the ti6al4v alloys commonly used in femoral stems. Tribol Int 68:85–93

    Article  CAS  Google Scholar 

  95. Buciumeanu M, Araujo A, Carvalho O, Miranda G, Souza JCM, Silva FS, Henriques B (2017) Study of the tribocorrosion behaviour of Ti6Al4V-ha biocomposites. Tribol Int 107:77–84

    Article  CAS  Google Scholar 

  96. Hua N, Chen W, Wang Q, Guo Q, Huang Y, Zhang T (2018) Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J Alloys Compd 745:111–120

    Article  CAS  Google Scholar 

  97. Doni Z, Alves AC, Toptan F, Gomes JR, Ramalho A, Buciumeanu M, Palaghian L, Silva FS (2013) Dry sliding and tribocorrosion behaviour of hot pressed cocrmo biomedical alloy as compared with the cast cocrmo and Ti6Al4V alloys. Mater Des 1980–2015(52):47–57

    Article  Google Scholar 

  98. Caha I, Alves AC, Kuroda PAB, Grandini CR, Pinto AMP, Rocha LA, Toptan F (2020) Degradation behavior of Ti-Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina. Corros Sci 167:108488

    Article  CAS  Google Scholar 

  99. Hacisalihoglu I, Samancioglu A, Yildiz F, Purcek G, Alsaran A (2015) Tribocorrosion properties of different type titanium alloys in simulated body fluid. Wear 332:679–686

    Article  Google Scholar 

  100. Licausi M-P, Muñoz AI, Borrás VA (2013) Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs. J Phys D: Appl Phys 46(40):404003

    Article  Google Scholar 

  101. Çaha I, Alves A, Chirico C, Pinto A, Tsipas S, Gordo E, Toptan F (2020) Corrosion and tribocorrosion behavior of Ti-40Nb and Ti-25Nb-5Fe alloys processed by powder metallurgy. Metall Mater Trans A 51(6):3256–3267

    Article  Google Scholar 

  102. Vilhena L, Oppong G, Ramalho A (2019) Tribocorrosion of different biomaterials under reciprocating sliding conditions in artificial saliva. Lubr Sci 31(8):364–380

    Article  CAS  Google Scholar 

  103. Henry P, Takadoum J (2009) Friction and tribocorrosion of 316l stainless steel against uhmwpe or alumina in saline solution. Tribol Mater Surf Interfaces 3(2):84–91

    Article  CAS  Google Scholar 

  104. Toptan F, Alves AC, Carvalho Ó, Bartolomeu F, Pinto AMP, Silva F, Miranda G (2019) Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy. J Mater Process Technol 266:239–245

    Article  CAS  Google Scholar 

  105. Chiu T-M, Mahmoudi M, Dai W, Elwany A, Liang H, Castaneda H (2018) Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing. Electrochim Acta 279:143–151

    Article  CAS  Google Scholar 

  106. Bartolomeu F, Buciumeanu M, Costa MM, Alves N, Gasik M, Silva FS, Miranda G (2019) Multi-material Ti6Al4V & peek cellular structures produced by selective laser melting and hot pressing: a tribocorrosion study targeting orthopedic applications. J Mech Behav Biomed Mater 89:54–64

    Article  CAS  Google Scholar 

  107. Avila JD, Alrawahi Z, Bose S, Bandyopadhyay A (2020) Additively manufactured Ti6Al4V-Si-hydroxyapatite composites for articulating surfaces of load-bearing implants. Addit Manuf 34:101241

    CAS  Google Scholar 

  108. Chen J, Li C, Zhou L, Ren Y, Li C, Liao X, Wang Y, Niu Y (2022) The anisotropic of corrosion and tribocorrosion behaviors of Ti15Mo alloy fabricated by selective laser melting. Mater Charact 190:112000

    Article  CAS  Google Scholar 

  109. Amanov A (2021) Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications. Surf Coat Technol 421:127378

    Article  CAS  Google Scholar 

  110. Dai N, Zhang LC, Zhang J, Zhang X, Ni Q, Chen Y, Wu M, Yang C (2016) Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros Sci 111:703–710

    Article  CAS  Google Scholar 

  111. Liu Y, Mace A, Lee H, Camargo M, Gilbert JL (2022) Single asperity sub-nano to nanoscale wear and tribocorrosion of wrought CoCrMo and additively manufactured cocrmow alloys. Tribol Int 174:107770

    Article  CAS  Google Scholar 

  112. Grabarczyk J, Gaj J, Pazik B, Kaczorowski W, Januszewicz B (2021) Tribocorrosion behavior of Ti6Al4V alloy after thermo-chemical treatment and DLC deposition for biomedical applications. Tribol Int 153:106560

    Article  CAS  Google Scholar 

  113. Azzi M, Paquette M, Szpunar JA, Klemberg-Sapieha JE, Martinu L (2009) Tribocorrosion behaviour of DLC-coated 316l stainless steel. Wear 267(5–8):860–866

    Article  CAS  Google Scholar 

  114. Cheng K-Y, Pagan N, Bijukumar D, Mathew MT, McNallan M (2018) Carburized titanium as a solid lubricant on hip implants: corrosion, tribocorrosion and biocompatibility aspects. Thin Solid Films 665:148–158

    Article  CAS  Google Scholar 

  115. Cheng K-Y, Nargaraj R, Bijukumar D, Mathew MT, McNallan M (2020) Improvement of tribocorrosion behavior on titanium alloy by carbide-derived carbon (CDC). Surf Coat Technol 392:125692

    Article  CAS  Google Scholar 

  116. Beliardouh NE, Ramoul CE, Nouveau C, Kaleli EH, Montagne A (2022) Synthesis and tribocorrosion performances of multilayer (Ta/ZrN) n coatings. Thin Solid Films 749:139184

    Article  CAS  Google Scholar 

  117. Chen SN, Zhao YM, Zhang YF, Chen L, Liao B, Zhang X, Ouyang XP (2021) Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings. Surf Coat Technol 411:126886

    Article  CAS  Google Scholar 

  118. Alemón B, Flores M, Ramírez W, Huegel JC, Broitman E (2015) Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlvCN/CNx multilayer in simulated body fluid plus bovine serum albumin. Tribol Int 81:159–168

    Article  Google Scholar 

  119. Ureña J, Tsipas S, Pinto AM, Toptan F, Gordo E, Jiménez-Morales A (2018) Corrosion and tribocorrosion behaviour of \(\beta\)-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Corros Sci 140:51–60

    Article  Google Scholar 

  120. Hee AC, Martin PJ, Bendavid A, Jamali SS, Zhao Y (2018) Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti-13Nb-13Zr alloy for bio-implants applications. Wear 400:31–42

    Article  Google Scholar 

  121. Cheng K-Y, Gopal V, McNallan M, Manivasagam G, Mathew MT (2019) Enhanced tribocorrosion resistance of hard ceramic coated Ti-6Al-4V alloy for hip implant application: in-vitro simulation study. ACS Biomater Sci Eng 5(9):4817–4824

    Article  CAS  Google Scholar 

  122. Gao Z, Ji G, Shi Z, Wang X (2021) The tribocorrosion behaviour of ysz coating deposited on stainless steel substrate in 3.5 wt% nacl solution. Ceram Int 47(15):21051-21060

  123. Sourani F, Raeissi K, Enayati MH, Kharaziha M, Hakimizad A, Salimijazi HR (2022) Corrosion and tribocorrosion behavior of ZrO2-Al2O3 composite coatings developed by plasma electrolytic oxidation for load-bearing implants. SSRN 4045433

  124. Pana I, Vladescu A, Constantin LR, Sandu IG, Dinu M, Cotrut CM (2020) In vitro corrosion and tribocorrosion performance of biocompatible carbide coatings. Coatings 10(7):654

    Article  CAS  Google Scholar 

  125. Fazel M, Salimijazi HR, Golozar MA et al (2015) A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure ti and ti6al4v alloy treated by micro-arc oxidation process. Appl Surf Sci 324:751–756

    Article  CAS  Google Scholar 

  126. Sousa L, Basilio L, Alves AC, Toptan F (2021) Tribocorrosion-resistant biofunctionalized Ti-Al2O3 composites. Surf Coat Technol 420:127329

    Article  CAS  Google Scholar 

  127. Alves AC, Oliveira F, Wenger F, Ponthiaux P, Celis J-P, Rocha LA (2013) Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants. J Phys D: Appl Phys 46(40):404001

    Article  Google Scholar 

  128. Zuo Y, Li T, Jiang X, Wu M, Zhang Y, Chen F (2020) Tribocorrosion behavior of ca-p mao coatings on ti6al4v alloy at various applied voltages. J Mater Res 35(5):444–453

    Article  CAS  Google Scholar 

  129. Laurindo CAH, Bemben LM, Torres RD, Mali SA, Gilbert JL, Soares P (2016) Influence of the annealing treatment on the tribocorrosion properties of ca and p containing TiO2 produced by plasma electrolytic oxidation. Mater Technol 31(12):719–725

    Article  CAS  Google Scholar 

  130. Fazel M, Shamanian M, Salimijazi HR (2020) Enhanced corrosion and tribocorrosion behavior of Ti6Al4V alloy by auto-sealed micro-arc oxidation layers. Biotribology 23:100131

    Article  Google Scholar 

  131. Lee C-K (2012) Fabrication, characterization and wear corrosion testing of bioactive hydroxyapatite/nano-TiO2 composite coatings on anodic Ti-6Al-4V substrate for biomedical applications. Mater Sci Eng: B 177(11):810–818

    Article  CAS  Google Scholar 

  132. Çaha I, Alves AC, Chirico C, Pinto AMP, Tsipas S, Gordo E, Toptan F (2021) A promising method to develop TiO2-based nanotubular surfaces on Ti-40Nb alloy with enhanced adhesion and improved tribocorrosion resistance. Appl Surf Sci 542:148658

    Article  Google Scholar 

  133. Çaha I, Alves AC, Chirico C, Pinto AM, Tsipas S, Gordo E, Toptan F (2021) Improved tribocorrosion behavior on bio-functionalized \(\beta\)-type titanium alloy by the pillar effect given by tin reinforcements. Surf Coat Technol 415:127122

    Article  Google Scholar 

  134. Albayrak Ç, Hacısalihoğlu İ, Alsaran A et al (2013) Tribocorrosion behavior of duplex treated pure titanium in simulated body fluid. Wear 302(1–2):1642–1648

    Article  CAS  Google Scholar 

  135. Çaha I, Alves AC, Affonço LJ, da Silva JHD, Rodrigues IR, Grandini CR, Rocha LA, Pinto AMP, Lisboa-Filho PN, Toptan F (2021) Degradation behaviour of Ti-12Nb alloy coated with ZnO/tin double layer. Surf Coat Technol 413:127104

    Article  Google Scholar 

  136. Guan J, Jiang X, Xiang Q, Yang F, Liu J (2021) Corrosion and tribocorrosion behavior of titanium surfaces designed by electromagnetic induction nitriding for biomedical applications. Surf Coat Technol 409:126844

    Article  CAS  Google Scholar 

  137. Bailey R (2018) Tribocorrosion response of surface-modified Ti in a 0.9% NaCl solution. Lubricants 6(4):86

  138. Cao L, Wan Y, Yang S, Pu J (2018) The tribocorrosion and corrosion properties of thermally oxidized Ti6Al4V alloy in 0.9 wt.% NaCl physiological saline. Coatings 8(8):285

  139. Silva DP, Churiaque C, Bastos IN, Sánchez-Amaya JM (2016) Tribocorrosion study of ordinary and laser-melted Ti6Al4V alloy. Metals 6(10):253

    Article  Google Scholar 

  140. Obadele BA, Andrews A, Olubambi PA, Mathew MT, Pityana S (2015) Tribocorrosion behaviour of laser cladded biomedical grade titanium alloy. Mater Corros 66(10):1133–1139

    Article  CAS  Google Scholar 

  141. Siddaiah A, Mao B, Liao Y, Menezes PL (2020) Effect of laser shock peening on the wear-corrosion synergistic behavior of an az31b magnesium alloy. J Tribol 142(4):041701

    Article  CAS  Google Scholar 

  142. Bozkurt YB, Kovacı H, Yetim AF, Çelik A (2022) Tribocorrosion properties and mechanism of a shot peened AISI 4140 low-alloy steel. Surf Coat Technol 440:128444

    Article  CAS  Google Scholar 

  143. Sun Y, Bailey R (2014) Improvement in tribocorrosion behavior of 304 stainless steel by surface mechanical attrition treatment. Surf Coat Technol 253:284–291

    Article  CAS  Google Scholar 

  144. Roy RK, Lee K-R (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res Part B: Appl Biomater 83(1):72–84

    Article  Google Scholar 

  145. Allen M, Myer B, Rushton N (2001) In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J Biomed Mater Res 58(3):319–328

    Article  CAS  Google Scholar 

  146. Caetano-Lopes J, Canhao H, Fonseca JE (2007) Osteoblasts and bone formation. Acta reumatológica portuguesa 32(2):103–110

    Google Scholar 

  147. Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Shokuhfar T, Celis J-P, Rocha LA (2018) Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J Mech Behav Biomed Mater 80:143–154

    Article  CAS  Google Scholar 

  148. Alves SA, Bayón R, de Viteri VS, Garcia MP, Igartua A, Fernandes MH, Rocha LA (2015) Tribocorrosion behavior of calcium-and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental implants. J Bio Tribo Corros 1(3):1–21

    Article  Google Scholar 

  149. Zuo Y, Li T, Yu P, Zhao Z, Chen X, Zhang Y, Chen F (2019) Effect of graphene oxide additive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy. Appl Surf Sci 480:26–34

    Article  CAS  Google Scholar 

  150. Souza JCM, Tajiri HA, Morsch CS, Buciumeanu M, Mathew MT, Silva FS, Henriques B (2015) Tribocorrosion behavior of Ti6Al4V coated with a bio-absorbable polymer for biomedical applications. J Bio Tribo Corros 1(4):1–6

    Article  Google Scholar 

  151. Obadele BA, Andrews A, Mathew MT, Olubambi PA, Pityana S (2015) Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating. Appl Surf Sci 345:99–108

    Article  CAS  Google Scholar 

  152. Blau P, Stack M, Wood R, Mischler S, Jiang J, Drees D, Rocha L, Wimmer M, Celis J-P, Cowan R (2013) Future needs for tribo-corrosion research and testing

  153. Rosenbloom SN, Corbett RA (2007) An assessment of astm f 2129 electrochemical testing of small medical implants-lessons learned. In: CORROSION 2007. OnePetro

  154. Talha M, Ma Y, Kumar P, Lin Y, Singh A (2019) Role of protein adsorption in the bio corrosion of metallic implants-a review. Colloids Surf B: Biointerfaces 176:494–506

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Regional Council of Champagne-Ardenne (France) through the CORR-FA project as well as from the EPF Graduate School of Engineering. They also acknowledge the FabAdd Platform of EPF Troyes for manufacturing the samples. The ‘Troyes Champagne Métropole’ and the Aube Department Council (France) are also acknowledged for their financial support of Markforged-Metal X System.

Author information

Authors and Affiliations

Authors

Contributions

This review was written by M. Naim who is supervised by A. Alhussein and M. Chemkhi. A. Alhussein and M. Chemkhi reviewed and edited this review article. Mahmoud NAIM: Conceptualization, Methodology, Formal analysis, Software, Writing—Original draft preparation. Akram ALHUSSEIN: Conceptualization, Resources, Writing—Reviewing and Editing, Supervision, Validation. Mahdi CHEMKHI: Conceptualization, Resources, Writing—Reviewing and Editing, Supervision, Validation.

Corresponding author

Correspondence to Akram Alhussein.

Ethics declarations

Competing Interest

The authors declare that they have no conflicts of interest

Ethical Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naim, M., Alhussein, A. & Chemkhi, M. Tribocorrosion of Additively Manufactured (AM-ed) Metallic Biomaterials in Hip Implants : Review on Methodology and Post Treatments. J Bio Tribo Corros 9, 65 (2023). https://doi.org/10.1007/s40735-023-00783-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00783-4

Keywords

Navigation