Skip to main content
Log in

Use of Thymus vulgaris Extract as Green Corrosion Inhibitor for Bronze in Acid Rain

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

A study on the use of methanolic extract of Thymus vulgaris leaves as green corrosion inhibitor for bronze in simulated acid rain has been carried out using gravimetric and electrochemical tests. Electrochemical tests included potentiodynamic polarization curves and electrochemical impedance spectroscopy. Inhibitor concentrations were in the range 0–1000 ppm, whereas testing temperatures included 25, 40 and 60 °C. The results indicate that T. vulgaris is a good, anodic type of inhibitor with an efficiency that increased with the inhibitor concentration, reaching its maximum value, higher than 90%, at a concentration of 800 ppm, but it decreased as the temperature increased from 25 down to 60 °C. The inhibitor is physically adsorbed onto the metal surface according to a Langmuir adsorption isotherm at the different testing temperatures. The extract contains many antioxidants being the most abundant ones phenol, 2-metil-5-(1-metilethyl)- and d, α-tocopherol which give to the extract its inhibitory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be available on reasonable request.

References

  1. Chang T, Herting G, Goidanich S, Sánchez Amaya JM, Arenas MA, Le Bozec N, Leygra I, Odnevall Wallinder I (2019) The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture. Corros Sci 149:54–67. https://doi.org/10.1016/j.corsci.2019.01.002

    Article  CAS  Google Scholar 

  2. Liang Z, Jiang K, Zhang T, Dou Z (2019) Corrosion behavior of Cu–Sn bronze alloys in simulated archeological soil media. Mater Corros 71:617–627. https://doi.org/10.1002/maco.201911338

    Article  CAS  Google Scholar 

  3. Petiti C, Toniolo L, Gulotta D, Mariani B, Goidanich S (2020) Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment. Environ Sci Pollut Res 27:3081–13094. https://doi.org/10.1007/s11356-020-07814-4

    Article  CAS  Google Scholar 

  4. Chang T, Maltseva A, Volovitch P, Odnevall Wallinder I, Leygraf C (2020) A mechanistic study of stratified patina evolution on Sn-bronze in chloride-rich atmospheres. Corros Sci 166:108477. https://doi.org/10.1016/j.corsci.2020.108477

    Article  CAS  Google Scholar 

  5. Liu Z, Yang J, Zhang J, Xiang H, Wei H (2019) A bibliometric analysis of research on acid rain. Sustainability 1:3077–3084. https://doi.org/10.3390/su11113077

    Article  Google Scholar 

  6. Szilvia S, Nagy M, Juhász L, Bubonyi T, Péter B, Forgács G, Bakonyi E (2020) Conservation purpose material testing of corrosion products on outdoor bronze statues. IOP Conf Ser: Mater Sci Eng 903:012037–012044. https://doi.org/10.1088/1757-899X/903/1/012037

    Article  CAS  Google Scholar 

  7. Letardi P (2021) Testing new coatings for outdoor bronze monuments: a methodological overview. Coatings 11:131–140. https://doi.org/10.3390/coatings11020131

    Article  CAS  Google Scholar 

  8. Abdel-Karim AM, El-Shamy AM (2022) A review on green corrosion inhibitors for protection of archeological metal artifacts. J Bio Tribo Corros. https://doi.org/10.1007/s40735-022-00636-6

    Article  Google Scholar 

  9. Marzorati S, Verotta L, Trasatti SP (2019) Green corrosion inhibitors from natural sources and biomass wastes. Molecules 24:48–57. https://doi.org/10.3390/molecules24010048

    Article  CAS  Google Scholar 

  10. Miralrio A, Espinoza Vázquez A (2020) Plant extracts as green corrosion inhibitors for different metal surfaces and corrosive media: a review. Processes 8:942–953. https://doi.org/10.3390/pr8080942

    Article  CAS  Google Scholar 

  11. Popoola LT (2020) Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors. Heliyon 5:01143–01152. https://doi.org/10.1016/j.heliyon.2019.e01143

    Article  Google Scholar 

  12. Singh CD, Verma C, Quraishi MA (2021) Molecular structural aspects of organic corrosion inhibitors: experimental and computational insights. J Mol Struct 1227:129374. https://doi.org/10.1016/j.molstruc.2020.129374

    Article  CAS  Google Scholar 

  13. Sharma S, Kumar A (2021) Recent advances in metallic corrosion inhibition: a review. J Mol Liq 322:114862. https://doi.org/10.1016/j.molliq.2020.114862

    Article  CAS  Google Scholar 

  14. Binyehmed FM, Abdullah AM, Zainal Z, Zawawi RM (2018) Green coffee bean extract as a green corrosion inhibitor for aluminium in artificial acid rain medium. Int J Appl Environ 13:171–183

    Google Scholar 

  15. Abbout S, Chellouli M, Zouarhi M, Benzidia B, Hammouch H, Chebabe D, Dermaj A, Erramli H, Bettach N, Hajjaji N (2018) New formulation based on Ceratonia siliqua L. Seed oil, as a green corrosion inhibitor of iron in acidic medium. Anal Bioanal Electrochem 10:789–804

    CAS  Google Scholar 

  16. Pilić Z, Martinović I (2019) Effect of Helichrysum italicum on the corrosion of copper in simulated acid rain solution. Chem Biochem Eng Q 33:449–457. https://doi.org/10.15255/CABEQ.2019.1614

    Article  Google Scholar 

  17. Varvara S, Caniglia G, Izquierdo J, Bostan R, Găină L, Bobis O, Souto RM (2020) Multiscale electrochemical analysis of the corrosion control of bronze in simulated acid rain by horse-chestnut (Aesculus hippocastanum L.) extract as green inhibitor. Corros Sci 165:108381. https://doi.org/10.1016/j.corsci.2019.108381

    Article  CAS  Google Scholar 

  18. Rehioui M, Abbout S, Benzidia B, Hammouch H, Erramli H, Daoud NA, Badrane N, Hajjaji N (2021) Corrosion inhibiting effect of a green formulation based on Opuntia dillenii seed oil for iron in acid rain solution. Heliyon 7:06674–06682. https://doi.org/10.1016/j.heliyon.2021.e06674

    Article  Google Scholar 

  19. Chraka A, Raissouni I, Ben SN, Khayar S, Mansour A, Tazi S, Chaouket F, Bouchta D (2020) Identification of potential green inhibitors extracted from Thymbra capitata (L.) Cav. for the corrosion of Brass in 3% NaCl solution: experimental, SEM–EDX analysis, DFT computation and Monte Carlo simulation studies. J Bio Tribo Corros 6:80–99. https://doi.org/10.1007/s40735-020-00377-4

    Article  Google Scholar 

  20. Fouda AS, Shalabi K, Idress AA (2015) Ceratonia siliqua extract as a green corrosion inhibitor for copper and brass in nitric acid solutions. Green Chem Lett Rev 8:17–29. https://doi.org/10.1080/17518253.2015.1073797

    Article  CAS  Google Scholar 

  21. Benzidia B, Hammouch H, Dermaj A, Benassaoui H, About S, Hajjaji N (2019) Investigation of green corrosion inhibitor based on Aloe vera (L.) Burm. F. for the protection of bronze B66 in 3% NaCl. Anal Bioanal Electrochem 11:165–177

    CAS  Google Scholar 

  22. Abdel-Karim AM, El-Shamy AM (2022) A review on green corrosion inhibitors for protection of archeological metal artifacts. J Bio Tribo Corros 8:35–43. https://doi.org/10.1007/s40735-022-00636-6

    Article  Google Scholar 

  23. Tasić ŽZ, Petrović Mihajlović MB, Radovanović MB, Simonović AT, Antonijević MM (2020) Experimental and theoretical studies of paracetamol as a copper corrosion inhibitor. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.114817

    Article  Google Scholar 

  24. Tasić ŽZ, Petrović Mihajlović MB, Radovanović MB, Simonović AT, Antonijević MM (2019) Ibuprofen as a corrosion inhibitor for copper in synthetic acid rain solution. Sci Rep 9:14710. https://doi.org/10.1038/s41598-019-51299-2

    Article  CAS  Google Scholar 

  25. Biswal J, Pant HJ, Sharma VK, Sharma SC, Gupta AK (2021) Evaluation of inhibition effect of poly vinyl pyrrolidone on corrosion of bronze in simulated acid rain using thin layer activation technique. Nucl Inst Methods Phys Res B 503:30–36. https://doi.org/10.1016/j.nimb.2021.07.007

    Article  CAS  Google Scholar 

  26. Khan A, Amjad M, Saboon S (2019) GC-MS analysis and biological activities of Thymus vulgaris and Mentha arvensis essential oil. Turk J Biochem 44:388–396. https://doi.org/10.1515/tjb-2018-0258

    Article  CAS  Google Scholar 

  27. Escobar A, Perez M, Romanelli G, Blustein G (2020) Thymol bioactivity: a review focusing on practical applications. Arab J Chem 13:9243–9269. https://doi.org/10.1016/j.arabjc.2020.11.009

    Article  CAS  Google Scholar 

  28. Jannati N, Honarvar M, Gharachorloo M (2021) Extraction of thymol compound from Thymus vulgaris L. oil. JMPB 1:81–84. https://doi.org/10.22092/JMPB.2020.351668.1252

    Article  Google Scholar 

  29. Gedikoğlu A, Sökmen M, Çivit A (2019) Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci Nutr 7:1704–1714. https://doi.org/10.1002/fsn3.1007

    Article  CAS  Google Scholar 

  30. Sas IT, Proks M, Păunescu V, Pînzaru I, Sas I, Coricovac D, Moacă A, Dehelean C (2019) Thymus vulgaris extract formulated as cyclodextrin complexes: synthesis, characterization, antioxidant activity and in vitro cytotoxicity assessment. Farmacia 67:442–451. https://doi.org/10.31925/farmacia.2019.3.10

    Article  CAS  Google Scholar 

  31. Hemmati S, Joshani Z, Zangeneh A, Zangeneh M (2019) Green synthesis and chemical characterization of Thymus vulgaris leaf aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl Organomet Chem 34:5267. https://doi.org/10.1002/aoc.5267

    Article  CAS  Google Scholar 

  32. Crespo Y, Sánchez L, Sol A, García-Quintana Y (2019) Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon 5:01942. https://doi.org/10.1016/j.heliyon.2019.e01942

    Article  Google Scholar 

  33. Abdelbassat H, Bouhlali EDT, Khouya T, Ramchoun M, Zegzouti Y, Alem C, Benlyas M (2019) Antioxidant, anti-inflammatory and anticoagulant activities of three Thymus species grown in southeastern Morocco. Future J Pharm Sci 5:4–11. https://doi.org/10.1186/s43094-019-0005-x

    Article  Google Scholar 

  34. Afonso AF, Pereira OR, Cardoso SM (2020) Health-promoting effects of thymus phenolic-rich extracts: antioxidant, anti-inflammatory and antitumoral properties. Antioxidants 9:814–822. https://doi.org/10.3390/antiox9090814

    Article  CAS  Google Scholar 

  35. ASTM G1-03 (2017) Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM International, WestConshohocken

  36. Fuchs-Godec R, Zerjav G (2015) Corrosion resistance of high -level-hydrophobic layers in com bination with Vitam in E—(a-tocopherol) as green inhibitor. Corros Sci 97:7–16. https://doi.org/10.1016/j.corsci.2015.03.016

    Article  CAS  Google Scholar 

  37. Verma DK, Khan F (2016) Green approach to corrosion inhibition of mild steel in hydrochloric acid medium using extract of spirogyra algae. Green Chem Lett Rev 9:52–60. https://doi.org/10.1080/17518253.2015.1137976

    Article  CAS  Google Scholar 

  38. Ngobiri NC, Oguzie EE, Li Y (2015) Eco-friendly corrosion inhibition of pipeline steel using Brassica oleracea. Int J Corros 2015:1–9. https://doi.org/10.1155/2015/404139

    Article  Google Scholar 

  39. Yaqo EA, Anee RA, Abdulmajeed MH, Tomi IHR, Kadhim MM (2019) Aminotriazole derivative as anti-corrosion material for Iraqi kerosene tanks: electrochemical, computational and the surface study. Chem Select 4:9883–9892. https://doi.org/10.1002/slct.201902398

    Article  CAS  Google Scholar 

  40. Alkarim TA, Al-Azawi KF, Anee RA (2021) Anticorrosive properties of Spiramycin for aluminum in acidic medium. Int J Corros Scale Inhib 10:1168–1188. https://doi.org/10.17675/2305-6894-2021-10-3-20

    Article  CAS  Google Scholar 

  41. Bentiss F, Bouanis M, Mernari B, Traisnel M, Vezin H, Lagrenee M (2007) Understanding the adsorption of 4H–1,2,4-triazole derivatives on mild steel surface in molar hydrochloric acid. Appl Surf Sci 253:3696–3704. https://doi.org/10.1016/j.corsci.2012.03.036

    Article  CAS  Google Scholar 

  42. Free ML (2002) Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acid medium. Corros Sci 44:2865–2870. https://doi.org/10.1016/S0010-938X(02)00080-X

    Article  CAS  Google Scholar 

  43. Mareci D, Chelariu R, Rusu I, Melniciuc Puică N, Sutiman D (2010) Electrochemical behaviour of some religious artefacts in simulated acid rain. Eur J Sci 6:57–70

    Google Scholar 

  44. El Adnani Z, Mcharfi M, Sfaira M, Benzakour M, Benjelloun AT, Touhami ME (2013) DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros Sci 68:223–230. https://doi.org/10.1016/j.corsci.2012.11.020

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DGG-G, AKL-G and RL-S. The first draft of the manuscript was written by JGG-R and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. G. Gonzalez-Rodriguez.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Rodriguez, J.G., Gutierrez-Granda, D.G., Larios-Galvez, A.K. et al. Use of Thymus vulgaris Extract as Green Corrosion Inhibitor for Bronze in Acid Rain. J Bio Tribo Corros 8, 77 (2022). https://doi.org/10.1007/s40735-022-00676-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00676-y

Keywords

Navigation