Skip to main content

Advertisement

Log in

Annealing Temperature Effect on Tribocorrosion and Biocompatibility Properties of TiO2 Nanotubes

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

TiO2 nanotubes array gives entirely new types of interactions between titanium surfaces and cells due to the surface area increase and topography that resemble native bone tissue, and has been extensively studied as a promising technique to surface modification of implants. It is also well established that the annealing of anodized titanium surfaces significantly affects the properties of TiO2 nanotubes, as well as the interaction with cells. Usually, titanium implants are subjected to micromovements under loading conditions in an aggressive biological environment, which causes tribocorrosion. The resulting debris from a tribocorrosive process could lead to infectious problems and eventually implant loss. This work aimed to evaluate the influence of the annealing treatment on the microstructure and mechanical properties of a TiO2 nanotube layer produced on titanium, and consequently, on the tribocorrosive resistance, and the biological response to human dermal fibroblasts (HDF). Commercially pure titanium (grade 4) samples were anodized through the potentiostatic method using an aqueous electrolyte containing Ca and P and, after anodizing, submitted to annealing at different temperatures. The modified surfaces were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (DRX), tribocorrosion tests, and bioactivity using HDF. Our results show that the annealing affects significantly the mechanical and tribological properties of the nanotubes layer. We also observed an increase in phosphorous amount with annealing temperature, which, along with the increase in the rutile crystalline phase amount, increases cells’ adhesion and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mat Sci Eng R 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  2. Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mat Sci Eng C 26:1269–1277. https://doi.org/10.1016/j.msec.2005.08.032

    Article  CAS  Google Scholar 

  3. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346. https://doi.org/10.1016/S1350-4533(01)00050-9

    Article  CAS  Google Scholar 

  4. Lautenschlager EP, Monaghan P (1993) Titanium and titanium alloys as dental materials. Int Dent J 43(3):245–253

    CAS  Google Scholar 

  5. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T (2016) Impact of dental implant surface modifications on osseointegration. Biomed Res Int 2016:6285620. https://doi.org/10.1155/2016/6285620

    Article  CAS  Google Scholar 

  6. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD (2006) Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surf B Biointerfaces 50(1):1–8. https://doi.org/10.1016/j.colsurfb.2006.03.016

    Article  CAS  Google Scholar 

  7. Puleo DA, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20(23–24):2311–2321. https://doi.org/10.1016/S0142-9612(99)00160-X

    Article  CAS  Google Scholar 

  8. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34(1):40–57. https://doi.org/10.1016/j.dental.2017.09.007

    Article  CAS  Google Scholar 

  9. Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188–3197. https://doi.org/10.1016/j.biomaterials.2007.03.020

    Article  CAS  Google Scholar 

  10. Oh S, Jin S, Titanium oxide nanotubes with controlled morphology for enhanced bone growth (2006) Mat Sci Eng C 26(8): 1301–06. Doi: 10.1016/j.msec.2005.08.014.

  11. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92(3):1218–1224. https://doi.org/10.1002/jbm.a.32463

    Article  CAS  Google Scholar 

  12. Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 5(8):3215–3223. https://doi.org/10.1016/j.actbio.2009.05.008

    Article  CAS  Google Scholar 

  13. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35(1):124–133. https://doi.org/10.1016/j.bone.2004.03.009

    Article  CAS  Google Scholar 

  14. Kulkarni M, Mazare A, Gongadze E, Perutkova S, Kralj-Iglic V, Milošev I, Schmuki P, Iglič A, Mozetič M (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26(6):062002. https://doi.org/10.1088/0957-4484/26/6/062002

    Article  CAS  Google Scholar 

  15. Souza JCM, Sordi MB, Kanazawa M, Ravindran S, Henriques B, Silva FS, Aparicio C, Cooper LF (2019) Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 94:112–131. https://doi.org/10.1016/j.actbio.2019.05.045

    Article  CAS  Google Scholar 

  16. Davey AV (2017) The effect of manufacturing techniques on custom-made titanium cranioplasty plates: a pilot study. J Craniomaxillofac Surg 45(12):2017–2027. https://doi.org/10.1016/j.jcms.2017.09.020

    Article  Google Scholar 

  17. Bressan E, Sbricoli L, Guazzo R, Tocco I, Roman M, Vindigni V, Stellini E, Gardin C, Ferroni L, Sivolella S, Zavan B (2013) Nanostructured surfaces of dental implants. Int J Mol Sci 14(1):1918–1931. https://doi.org/10.3390/ijms14011918

    Article  CAS  Google Scholar 

  18. Salou L, Hoornaert A, Louarn G, Layrolle P (2015) Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater 11:494–502. https://doi.org/10.1016/j.actbio.2014.10.017

    Article  CAS  Google Scholar 

  19. Moore B, Asadi E, Lewis G (2017) Deposition methods for microstructured and nanostructured coatings on metallic bone implants: a review. Adv Mater Sci Eng. https://doi.org/10.1155/2017/5812907

    Article  Google Scholar 

  20. Yeo IL (2019) Modifications of dental implant surfaces at the micro- and nano-level for enhanced osseointegration. Materials 13(1):89. https://doi.org/10.3390/ma13010089

    Article  Google Scholar 

  21. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163. https://doi.org/10.1021/la9713816

    Article  CAS  Google Scholar 

  22. Tsai CC, Nian JN, Teng H (2006) Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Appl Surf Sci 253(4):1898–1902. https://doi.org/10.1016/j.apsusc.2006.03.035

    Article  CAS  Google Scholar 

  23. Lee JH, Leu IC, Hsu MC, Chung YW, Hon MH (2005) Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J Phys Chem B 109(27):13056–13059. https://doi.org/10.1021/jp052203l

    Article  CAS  Google Scholar 

  24. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16(12):3331–3334. https://doi.org/10.1557/jmr.2001.0457

    Article  CAS  Google Scholar 

  25. Fu Y, Mo A (2018) A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res Lett 13(1):187. https://doi.org/10.1186/s11671-018-2597-z

    Article  CAS  Google Scholar 

  26. Roy P, Berger S, Schmuki P (2011) TiO2 Nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939. https://doi.org/10.1002/anie.201001374

    Article  CAS  Google Scholar 

  27. Soares P, Dias-Netipanyj MF, Elifio-Esposito S, Leszczak V, Popat K (2018) Effects of calcium and phosphorus incorporation on the properties and bioactivity of TiO2 nanotubes. J Biomater Appl 33:410–421. https://doi.org/10.1177/0885328218797549

    Article  CAS  Google Scholar 

  28. Alves AC, Oliveira F, Wenger F, Ponthiaux P, Celis J-P, Rocha LA (2013) Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants. J Phys D Appl Phys 46(40):404001. https://doi.org/10.1088/0022-3727/46/40/404001

    Article  CAS  Google Scholar 

  29. Mathew MT, Pai PS, Pourzal R, Fischer A, Wimmer MA (2009) Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol. https://doi.org/10.1155/2009/250986

    Article  Google Scholar 

  30. Das K, Bandyopadhyay A, Bose S (2008) Biocompatibility and in situ growth of TiO2 nanotubes on Ti using different electrolyte chemistry. J Am Ceram Soc 91(9):2808–2814. https://doi.org/10.1111/j.1551-2916.2008.02545.x

    Article  CAS  Google Scholar 

  31. Li MO, Xiao X, Liu R (2008) Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Appl Surf Sci 255(2):365–367. https://doi.org/10.1016/j.apsusc.2008.06.108

    Article  CAS  Google Scholar 

  32. Dias-Netipanyj MF, Cowden K, Sopchenski L, Cogo SC, Elifio-Esposito S, Popat KC, Soares P (2019) Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. Mat Sci Eng C Mater Biol Appl 103:109850. https://doi.org/10.1016/j.msec.2019.109850

    Article  CAS  Google Scholar 

  33. Jin F, Chu PK, Wang K, Zhao J, Huang A, Tong H (2008) Thermal stability of titania films prepared on titanium by micro-arc oxidation. Mat Sci Eng A Struct 476(1–2):78–82. https://doi.org/10.1016/j.msea.2007.05.070

    Article  CAS  Google Scholar 

  34. Krishna DSR, Brama YL, Sun Y (2007) Thick rutile layer on titanium for tribological applications. Tribol Int 40(2):329–334. https://doi.org/10.1016/j.triboint.2005.08.004

    Article  CAS  Google Scholar 

  35. Yetim AF (2010) Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf Coat Tech 205(6):1757–1763. https://doi.org/10.1016/j.surfcoat.2010.08.079

    Article  CAS  Google Scholar 

  36. Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Shokuhfar T, Celis JP, Rocha LA (2018) Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J Mech Behav Biomed Mater 80:143–154. https://doi.org/10.1016/j.jmbbm.2018.01.038

    Article  CAS  Google Scholar 

  37. Ratner B, Brunette DM, Tengvall P, Textor M, Thomsen P (2001) A perspective on titanium biocompatibility. Engineering Materials. Springer, Berlin

    Google Scholar 

  38. Villar CC, Huynh-Ba G, Mills MP, Cochran DL (2011) Wound healing around dental implants. Endodon Top 25(1):44–62. https://doi.org/10.1111/etp.12018

    Article  Google Scholar 

  39. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  40. Spurr RA, Myers H (1957) Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer. Anal Chem 29(5):760–762

    Article  CAS  Google Scholar 

  41. Wang G, Li J, Lv K et al (2016) Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci Rep 6:31769. https://doi.org/10.1038/srep31769

    Article  CAS  Google Scholar 

  42. Xu YN, Liu MN, Wang MC, Oloyede A, Bell JM, Yan C (2015) Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays. J Appl Phys 118:145301. https://doi.org/10.1063/1.4932213

    Article  CAS  Google Scholar 

  43. Crawford GA, Chawla N, Houston JE (2009) Nanomechanics of biocompatible TiO2 nanotubes by Interfacial Force Microscopy (IFM). J Mech Behav Biomed Mater 2(6):580–587. https://doi.org/10.1016/j.jmbbm.2008.10.004

    Article  CAS  Google Scholar 

  44. Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A (2007) Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater 3(3):359–367. https://doi.org/10.1016/j.actbio.2006.08.004

    Article  CAS  Google Scholar 

  45. Chang WY, Fang TH, Chiu ZW, Hsiao YJ, Ji LW (2011) Nanomechanical properties of array TiO2 nanotubes. Microp Mesop Mater 145(1–3):87–92. https://doi.org/10.1016/j.micromeso.2011.04.035

    Article  CAS  Google Scholar 

  46. Zalnezhad E, Baradaran S, Bushroa AR, Sarhan AAD (2014) Mechanical property enhancement of Ti-6Al-4V by Multilayer thin solid film Ti/TiO2 nanotubular array coating for biomedical application. Metall Mater Trans A 45A(2):785–797. https://doi.org/10.1007/s11661-013-2043-x

    Article  CAS  Google Scholar 

  47. Schmidt-Stein F, Thiemann S, Berger S, Hahn R, Schmuki P (2010) Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater 58(19):6317–6323. https://doi.org/10.1016/j.actamat.2010.07.053

    Article  CAS  Google Scholar 

  48. Laurindo CAH, Lepienski CM, Amorim FL, Torres RD, Soares P (2018) Mechanical and tribological properties of Ca/P-doped titanium dioxide layer produced by plasma electrolytic oxidation: effects of applied voltage and heat treatment. Tribol Trans 61(4):733–741. https://doi.org/10.1080/10402004.2017.1404176

    Article  CAS  Google Scholar 

  49. Li T, Gulati K, Wang N, Zhang Z, Ivanovski S (2018) Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. Mater Sci Eng C Mater Biol Appl 88:182–195. https://doi.org/10.1016/j.msec.2018.03.007

    Article  CAS  Google Scholar 

  50. Acevedo-Peña P, Carrera-Crespo JE, González F, González I (2014) Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays. Electrochim Acta 140:564–571. https://doi.org/10.1016/j.electacta.2014.06.056

    Article  CAS  Google Scholar 

  51. Quinn SJ, Thomsen AR, Pang JL, Kantham L, Bräuner-Osborne H, Pollak M, Goltzman D, Brown EM (2013) Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 304(3):E310–E320. https://doi.org/10.1152/ajpendo.00460.2012

    Article  CAS  Google Scholar 

  52. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 64(1):164–170. https://doi.org/10.1002/jbm.a.10414

    Article  CAS  Google Scholar 

  53. An SH, Narayanan R, Matsumoto T, Lee HJ, Kwon TY, Kim KH (2011) Crystallinity of anodic TiO2 nanotubes and bioactivity. J Nanosci Nanotechnol 11(6):4910–4918. https://doi.org/10.1166/jnn.2011.4114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Council for Scientific and Technological Development (CNPq), Grant No. 420588/2013-2—PVE, Coordination for the Improvement of Higher Education Personnel (CAPES), and Fundação Araucária/CAPES 17/2014, Grant 23038.007035/2014-51 for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Soares.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontes, A.C.C.A., Sopchenski, L., Laurindo, C.A.H. et al. Annealing Temperature Effect on Tribocorrosion and Biocompatibility Properties of TiO2 Nanotubes. J Bio Tribo Corros 6, 64 (2020). https://doi.org/10.1007/s40735-020-00363-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00363-w

Keywords

Navigation