Skip to main content
Log in

The Plasma Kallikrein-Kinin System: A Hematological Target for Environmental Contaminants

  • REVIEW
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The increasing occurrence of emerging chemicals of concern in the environment has caused high public attention. Assessing their hematologic toxicities is of high priority, as the blood circulation system is usually essential in transporting these exogenous substances to diverse target tissues in vivo. The plasma kallikrein-kinin system (KKS) is one of the most abundant protease enzyme systems and regulates a series of crucial hematologic functions. As a vulnerable target, the KKS may sensitively respond to circulatory pollutants, and combing the current studies on the interaction of the environmental contaminants with the KKS would help understand the toxicological or pathological significance of this system.

Recent Findings

The current studies have revealed that some environmental contaminants, such as small molecular organic chemicals, engineered nanoparticles (NPs), and atmospheric fine particulate matter (PM), can directly interact with the KKS, causing the autoactivation of the Hageman factor XII (FXII), the subsequent cascade cleavage of the plasma prekallikrein (PPK), and high molecular kininogen (HK). The consequent downstream hematological effects and other related toxicities can be concomitantly induced via the crosstalk with the KKS. In addition, multiple approaches, based on in vitro, ex vivo, and in vivo experimental models, have been developed to characterize the binding of exogenous substances with FXII, conformational changes of the protein, the cascade activation of the KKS, and downstream toxicological or pathological responses.

Summary

As a vulnerable target, the plasma KKS sensitively responds to the exposure of environmental pollutants and is promising for biomonitoring hematotoxicity in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data reported in this review paper are based on raw data available in the published literature.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Pathak M, Wong SS, Dreveny I, Emsley J. Structure of plasma and tissue kallikreins. Thromb Haemost. 2013;110(3):423–33. https://doi.org/10.1160/th12-11-0840.

    Article  CAS  Google Scholar 

  2. Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost. 2017;43(8):814–26. https://doi.org/10.1055/s-0036-1598003.

    Article  CAS  Google Scholar 

  3. Burch RM. Bradykinin Receptors. In: Lennarz WJ, Lane MD, editors. Encyclopedia of biological chemistry. 2nd ed. Waltham: Academic Press; 2013.

    Google Scholar 

  4. Clements JA, Willemsen NM, Myers SA, Dong Y. The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit Rev Clin Lab Sci. 2004;41(3):265–312. https://doi.org/10.1080/10408360490471931.

    Article  CAS  Google Scholar 

  5. Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgoño CA, Kishi T, et al. Human tissue kallikreins: from gene structure to function and clinical applications. Adv Clin Chem. 2005;39:11–79. https://doi.org/10.1016/s0065-2423(04)39002-5.

    Article  Google Scholar 

  6. Skidgel RA, Erdös EG, Deddish PA. Kininases. In: Martini L, editor. Encyclopedia of endocrine diseases. New York: Elsevier; 2004.

    Google Scholar 

  7. Colman RW, Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood. 1997;90(10):3819–43.

    Article  CAS  Google Scholar 

  8. Costa-Neto CM, Dillenburg-Pilla P, Heinrich TA, Parreiras-e-Silva LT, Pereira MGAG, Reis RI, et al. Participation of kallikrein–kinin system in different pathologies. Int Immunopharmacol. 2008;8(2):135–42. https://doi.org/10.1016/j.intimp.2007.08.003.

    Article  CAS  Google Scholar 

  9. Nigretto JM, Corretge E, Jozefowicz M. Contributions of negatively charged chemical groups to the surface-dependent activation of human plasma by soluble dextran derivatives. Biomaterials. 1989;10(7):449–54. https://doi.org/10.1016/0142-9612(89)90085-9.

    Article  CAS  Google Scholar 

  10. Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost. 2016;14(1):28–39. https://doi.org/10.1111/jth.13194.

    Article  CAS  Google Scholar 

  11. Konrath S, Mailer RK, Renné T. Mechanism, functions, and diagnostic relevance of FXII activation by foreign surfaces. Hamostaseologie. 2021;41(6):489–501. https://doi.org/10.1055/a-1528-0499.

    Article  Google Scholar 

  12. Davoine C, Bouckaert C, Fillet M, Pochet L. Factor XII/XIIa inhibitors: their discovery, development, and potential indications. Eur J Med Chem. 2020;208: 112753. https://doi.org/10.1016/j.ejmech.2020.112753.

    Article  CAS  Google Scholar 

  13. Zhuo R, Siedlecki CA, Vogler EA. Autoactivation of blood factor XII at hydrophilic and hydrophobic surfaces. Biomaterials. 2006;27(24):4325–32. https://doi.org/10.1016/j.biomaterials.2006.04.001.

    Article  CAS  Google Scholar 

  14. Engel R, Brain CM, Paget J, Lionikiene AS, Mutch NJ. Single-chain factor XII exhibits activity when complexed to polyphosphate. J Thromb Haemost. 2014;12(9):1513–22. https://doi.org/10.1111/jth.12663.

    Article  CAS  Google Scholar 

  15. Yan Y, Xu LC, Vogler EA, Siedlecki CA. 1 - Contact activation by the intrinsic pathway of blood plasma coagulation. In: Siedlecki CA, editor. Hemocompatibility of biomaterials for clinical applications. Woodhead Publishing; 2018.

    Google Scholar 

  16. Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M. Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol. 2002;2(4):499–509. https://doi.org/10.1016/S1567-5769(01)00193-X.

    Article  CAS  Google Scholar 

  17. Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood. 2018;131(17):1903–9. https://doi.org/10.1182/blood-2017-04-569111.

    Article  CAS  Google Scholar 

  18. Björkqvist J, Jämsä A, Renné T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost. 2013;110(3):399–407. https://doi.org/10.1160/th13-03-0258.

    Article  Google Scholar 

  19. Morais RL, Silva ED, Sales VM, Filippelli-Silva R, Mori MA, Bader M, et al. Kinin B1 and B2 receptor deficiency protects against obesity induced by a high-fat diet and improves glucose tolerance in mice. Diabet Metab Synd Ob. 2015;8:399–407. https://doi.org/10.2147/DMSO.S87635.

    Article  CAS  Google Scholar 

  20. Kalinin DV. Factor XII(a) inhibitors: a review of the patent literature. Expert Opin Ther Pat. 2021;31(12):1155–76. https://doi.org/10.1080/13543776.2021.1945580.

    Article  CAS  Google Scholar 

  21. Ivanov I, Verhamme IM, Sun MF, Mohammed B, Cheng Q, Matafonov A, et al. Protease activity in single-chain prekallikrein. Blood. 2020;135(8):558–67. https://doi.org/10.1182/blood.2019002224.

    Article  Google Scholar 

  22. Joseph K, Kaplan AP. Formation of bradykinin: a major contributor to the innate inflammatory response. In: Alt FW, editor. Advances in Immunology. Academic Press; 2005.

    Google Scholar 

  23. Campbell DJ. Chapter 188 - Bradykinin Peptides. In: Kastin AJ, editor. Handbook of biologically active peptides. 2nd ed. Boston: Academic Press; 2013.

    Google Scholar 

  24. Girolami A, Scarparo P, Candeo N, Lombardi AM. Congenital prekallikrein deficiency. Expert Rev Hematol. 2010;3(6):685–95. https://doi.org/10.1586/ehm.10.69.

    Article  CAS  Google Scholar 

  25. Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010;47(13):2161–9. https://doi.org/10.1016/j.molimm.2010.05.010.

    Article  CAS  Google Scholar 

  26. Renné T, Gailani D, Meijers JCM, Müller-Esterl W. Characterization of the H-kininogen-binding site on factor XI: a comparison of factor XI and plasma prekallikrein. J Biol Chem. 2002;277(7):4892–9. https://doi.org/10.1074/jbc.M105221200.

    Article  CAS  Google Scholar 

  27. Kearney KJ, Butler J, Posada OM, Wilson C, Heal S, Ali M, et al. Kallikrein directly interacts with and activates factor IX, resulting in thrombin generation and fibrin formation independent of factor XI. PNAS. 2021;118(3): e2014810118. https://doi.org/10.1073/pnas.2014810118.

    Article  CAS  Google Scholar 

  28. Cassaro CM, Sampaio MU, Maeda NY, Chamone DF, Sampaio CA. Human plasma kallikrein: effect on the induced platelet aggregation. Thromb Res. 1987;48(1):81–7. https://doi.org/10.1016/0049-3848(87)90348-3.

    Article  CAS  Google Scholar 

  29. Wong MKS. Subchapter 30B - Kallikrein. In: Takei Y, Ando H, Tsutsui K, editors. Handbook of hormones. San Diego: Academic Press; 2016.

    Google Scholar 

  30. Wong MKS. Subchapter 43A - Kininogen. In: Ando H, Ukena K, Nagata S, editors. Handbook of hormones. 2nd ed. San Diego: Academic Press; 2021.

    Google Scholar 

  31. Puri RN, Zhou F, Hu C, Colman RF, Colman RW. High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets. Blood. 1991;77(3):500–7.

    Article  CAS  Google Scholar 

  32. Bennett V. Bradykinin. In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. New York: Elsevier; 2007.

    Google Scholar 

  33. Cyr M, Lepage Y, Blais C Jr, Gervais N, Cugno M, Rouleau JL, et al. Bradykinin and des-Arg(9)-bradykinin metabolic pathways and kinetics of activation of human plasma. Am J Physiol Heart Circ Physiol. 2001;281(1):H275–83. https://doi.org/10.1152/ajpheart.2001.281.1.H275.

    Article  CAS  Google Scholar 

  34. Wong MKS. Subchapter 42D - angiotensin converting enzyme. In: Ando H, Ukena K, Nagata S, editors. Handbook of hormones. 2nd ed. San Diego: Academic Press; 2021.

    Google Scholar 

  35. Sharma J. Activation of the bradykinin system by angiotensin-converting enzyme inhibitors. Eur J Inflamm. 2010;8:55–61. https://doi.org/10.1177/1721727X1000800201.

    Article  CAS  Google Scholar 

  36. Ehrenfeld P, Manso L, Pavicic MF, Matus CE, Borquez C, Lizama A, et al. Bioregulation of kallikrein-related peptidases 6, 10 and 11 by the kinin B1 receptor in breast cancer cells. Anticancer Res. 2014;34(12):6925–38.

    CAS  Google Scholar 

  37. Yin Y, Ye C, Zhou F, Wang J, Yang D, Yin W, et al. Molecular basis for kinin selectivity and activation of the human bradykinin receptors. Nat Str Uct Mol Biol. 2021;28(9):755–61. https://doi.org/10.1038/s41594-021-00645-y.

    Article  CAS  Google Scholar 

  38. Shen J, Zhang H. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol Sin. 2022. https://doi.org/10.1038/s41401-022-00982-8.

    Article  Google Scholar 

  39. Maestri R, Milia AF, Salis MB, Graiani G, Lagrasta C, Monica M, et al. Cardiac hypertrophy and microvascular deficit in kinin B2 receptor knockout mice. Hypertension. 2003;41(5):1151–5. https://doi.org/10.1161/01.Hyp.0000064180.55222.Df.

    Article  CAS  Google Scholar 

  40. Pfeffer MA. Heart failure and hypertension: importance of prevention. Med Clin North Am. 2017;101(1):19–28. https://doi.org/10.1016/j.mcna.2016.08.012.

    Article  Google Scholar 

  41. McCarty MF. ACE inhibition may decrease diabetes risk by boosting the impact of bradykinin on adipocytes. Med Hypotheses. 2003;60(6):779–83. https://doi.org/10.1016/s0306-9877(02)00234-7.

    Article  CAS  Google Scholar 

  42. Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343(1):227–35. https://doi.org/10.1007/s00441-010-1034-0.

    Article  CAS  Google Scholar 

  43. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738. https://doi.org/10.1152/physrev.00038.2017.

    Article  CAS  Google Scholar 

  44. Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation. Nat Rev Immunol. 2022;22(7):411–28. https://doi.org/10.1038/s41577-021-00634-8.

    Article  CAS  Google Scholar 

  45. Shariat-Madar Z, Mahdi F, Schmaier AH. Assembly and activation of the plasma kallikrein/kinin system: a new interpretation. Int Immunopharmacol. 2002;2(13):1841–9. https://doi.org/10.1016/S1567-5769(02)00178-9.

    Article  CAS  Google Scholar 

  46. Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials. 2009;30(10):1857–69. https://doi.org/10.1016/j.biomaterials.2008.12.041.

    Article  CAS  Google Scholar 

  47. Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers. 2013;18(4):279–96. https://doi.org/10.3109/1354750X.2013.787544.

    Article  CAS  Google Scholar 

  48. Chandler WL. Chapter 145 - Fibrinolytic Testing. In: Shaz BH, Hillyer CD, Reyes Gil M, editors. Transfusion medicine and hemostasis. 3rd ed. Elsevier; 2019.

    Google Scholar 

  49. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24. https://doi.org/10.1016/j.blre.2014.09.003.

    Article  CAS  Google Scholar 

  50. Binnema DJ, Dooijewaard G, Turion PN. An analysis of the activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein. Thromb Haemost. 1991;65(2):144–8.

    Article  CAS  Google Scholar 

  51. Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N. Regulation and functions of the renin-angiotensin system in white and brown adipose tissue. Compr Physiol. 2017;7(4):1137–50. https://doi.org/10.1002/cphy.c160031.

    Article  Google Scholar 

  52. Yim HE, Yoo KH. Renin-angiotensin system - considerations for hypertension and kidney. Electrolyte Blood Press; 2008.

    Book  Google Scholar 

  53. Yang Y, Liu G, He Q, Shen J, Xu L, Zhu P, et al. A promising candidate: heparin-binding protein steps onto the stage of sepsis prediction. J Immunol Res. 2019;2019:7515346. https://doi.org/10.1155/2019/7515346.

    Article  CAS  Google Scholar 

  54. Bentzer P, Fisher J, Kong HJ, Mörgelin M, Boyd JH, Walley KR, et al. Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Med Exp. 2016;4(1):33. https://doi.org/10.1186/s40635-016-0104-3.

    Article  Google Scholar 

  55. Kenne E, Soehnlein O, Herwald H, Lindbom L. Neutrophil-derived heparin binding protein (HBP) is an endogenous activator of the kallikrein-kinin system. FASEB J. 2009;23(S1):762.3. https://doi.org/10.1096/fasebj.23.1_supplement.762.3.

    Article  Google Scholar 

  56. Alvarenga PH, Xu X, Oliveira F, Chagas AC, Nascimento CR, Francischetti IM, et al. Novel family of insect salivary inhibitors blocks contact pathway activation by binding to polyphosphate, heparin, and dextran sulfate. Arterioscler Thromb Vasc Biol. 2013;33(12):2759–70. https://doi.org/10.1161/atvbaha.113.302482.

    Article  CAS  Google Scholar 

  57. Bender L, Weidmann H, Rose-John S, Renné T, Long AT. Factor XII-driven inflammatory reactions with implications for anaphylaxis. Front Immunol. 2017;8:1115. https://doi.org/10.3389/fimmu.2017.01115.

    Article  CAS  Google Scholar 

  58. Gomez-Garcia MJ, Doiron AL, Steele RRM, Labouta HI, Vafadar B, Shepherd RD, et al. Nanoparticle localization in blood vessels: dependence on fluid shear stress, flow disturbances, and flow-induced changes in endothelial physiology. Nanoscale. 2018;10(32):15249–61. https://doi.org/10.1039/c8nr03440k.

    Article  CAS  Google Scholar 

  59. Duffek A, Conrad A, Kolossa-Gehring M, Lange R, Rucic E, Schulte C, et al. Per- and polyfluoroalkyl substances in blood plasma – results of the German Environmental Survey for children and adolescents 2014–2017 (GerES V). Int J Hyg Environ Health. 2020;228: 113549. https://doi.org/10.1016/j.ijheh.2020.113549.

    Article  CAS  Google Scholar 

  60. Vlaanderen JJ, Janssen NA, Hoek G, Keski-Rahkonen P, Barupal DK, Cassee FR, et al. The impact of ambient air pollution on the human blood metabolome. Environ Res. 2017;156:341–8. https://doi.org/10.1016/j.envres.2017.03.042.

    Article  CAS  Google Scholar 

  61. Wang H, Zhang J, Ye L, Li S, Wang F, Zha W, et al. Plasma kallikrein-kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice. J Immunotoxicol. 2016;13(4):567–79. https://doi.org/10.3109/1547691x.2016.1142019.

    Article  CAS  Google Scholar 

  62. Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22(12):2345–73. https://doi.org/10.1039/d0em00291g.

    Article  CAS  Google Scholar 

  63. Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. Per- and polyfluoroalkyl substance toxicity and human healthreview: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2021;40(3):606–30. https://doi.org/10.1002/etc.4890.

    Article  CAS  Google Scholar 

  64. •• Liu QS, Sun Y, Qu G, Long Y, Zhao X, Zhang A, et al. Structure-dependent hematological effects of per- and polyfluoroalkyl substances on activation of plasma kallikrein–kinin system cascade. Environ Sci Technol. 2017;51(17):10173–83. https://doi.org/10.1021/acs.est.7b02055. This article shows for the first time that small molecule organic compounds of PFASs can activate plasma KKS.

    Article  CAS  Google Scholar 

  65. Liu QS, Hao F, Sun Z, Long Y, Zhou Q, Jiang G. Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system. Chemosphere. 2018;190:191–200. https://doi.org/10.1016/j.chemosphere.2017.10.002.

    Article  CAS  Google Scholar 

  66. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23(12):H18-40. https://doi.org/10.1002/adma.201100140.

    Article  CAS  Google Scholar 

  67. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8.

    Article  Google Scholar 

  68. Yin L, Zhong Z. 1.3.8B - Nanoparticles. In: Science Biomaterials, editor. Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ. 4th ed. Academic Press; 2020.

    Google Scholar 

  69. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: an up to date overview. J Clin Med. 2018;7(12). https://doi.org/10.3390/jcm7120490.

  70. Ngo W, Ahmed S, Blackadar C, Bussin B, Ji Q, Mladjenovic SM, et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev. 2022;185: 114238. https://doi.org/10.1016/j.addr.2022.114238.

    Article  CAS  Google Scholar 

  71. LoPresti ST, Arral ML, Chaudhary N, Whitehead KA. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J Control Release. 2022;345:819–31. https://doi.org/10.1016/j.jconrel.2022.03.046.

    Article  CAS  Google Scholar 

  72. Gatti AM, Montanari S, Ferrero S, Lavezzi AM. Silver nanoparticles in the fetal brain: new perspectives in understanding the pathogenesis of unexplained stillbirths. Nanomedicine (Lond). 2021;16(4):265–74. https://doi.org/10.2217/nnm-2020-0391.

    Article  CAS  Google Scholar 

  73. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81. https://doi.org/10.1038/nnano.2013.181.

    Article  CAS  Google Scholar 

  74. Lundqvist M, Augustsson C, Lilja M, Lundkvist K, Dahlbäck B, Linse S, et al. The nanoparticle protein corona formed in human blood or human blood fractions. PLoS ONE. 2017;12(4): e0175871. https://doi.org/10.1371/journal.pone.0175871.

    Article  CAS  Google Scholar 

  75. Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano. 2014;8(6):5515–26. https://doi.org/10.1021/nn4061012.

    Article  CAS  Google Scholar 

  76. Escamilla-Rivera V, Solorio-Rodríguez A, Uribe-Ramírez M, Lozano O, Lucas S, Chagolla-López A, et al. Plasma protein adsorption on Fe3O4-PEG nanoparticles activates the complement system and induces an inflammatory response. Int J Nanomedicine. 2019;14:2055–67. https://doi.org/10.2147/ijn.S192214.

    Article  CAS  Google Scholar 

  77. Ekdahl KN, Davoodpour P, Ekstrand-Hammarström B, Fromell K, Hamad OA, Hong J, et al. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles. Nanomedicine. 2018;14(3):735–44. https://doi.org/10.1016/j.nano.2017.12.008.

    Article  CAS  Google Scholar 

  78. Ekstrand-Hammarström B, Hong J, Davoodpour P, Sandholm K, Ekdahl KN, Bucht A, et al. TiO2 nanoparticles tested in a novel screening whole human blood model of toxicity trigger adverse activation of the kallikrein system at low concentrations. Biomaterials. 2015;51:58–68. https://doi.org/10.1016/j.biomaterials.2015.01.031.

    Article  CAS  Google Scholar 

  79. Jiang L, Li Y, Li Y, Guo C, Yu Y, Zou Y, et al. Silica nanoparticles induced the pre-thrombotic state in rats via activation of coagulation factor XII and the JNK-NF-κB/AP-1 pathway. Toxicol Res. 2015;4(6):1453–64. https://doi.org/10.1039/c5tx00118h.

    Article  CAS  Google Scholar 

  80. Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Arimori A, Isobe M, et al. Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure. Nanotechnology. 2012;23(4): 045101. https://doi.org/10.1088/0957-4484/23/4/045101.

    Article  CAS  Google Scholar 

  81. •• Hao F, Liu QS, Chen X, Zhao X, Zhou Q, Liao C, et al. Exploring the heterogeneity of nanoparticles in their interactions with plasma coagulation factor XII. ACS Nano. 2019;13(2):1990–2003. https://doi.org/10.1021/acsnano.8b08471. This article shows the distinct interaction of plasma KKS with nanoparticles with different physiochemical characteristics.

    Article  CAS  Google Scholar 

  82. Lira AL, Mina N, Bonturi CR, Nogueira RS, Torquato RJS, Oliva MLV, et al. Anionic ultrasmall gold nanoparticles bind to coagulation factors and disturb normal hemostatic balance. Chem Res Toxicol. 2022;35(9):1558–69. https://doi.org/10.1021/acs.chemrestox.2c00190.

    Article  CAS  Google Scholar 

  83. •• Long Y, Zhao X, Clermont A, Zhou Q, Liu Q, Feener EP, et al. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction. Nanotoxicology. 2016;10(4):501–11. https://doi.org/10.3109/17435390.2015.1088589. This article reveals for the first time that silver nanoparticles can induce an increase in retinal vascular permeability by activating plasma KKS.

    Article  CAS  Google Scholar 

  84. Xia S, Li J, Zu M, Li J, Liu J, Bai X, et al. Small size fullerenol nanoparticles inhibit thrombosis and blood coagulation through inhibiting activities of thrombin and FXa. Nanomed-Nanotechnol. 2018;14(3):929–39. https://doi.org/10.1016/j.nano.2017.12.013.

    Article  CAS  Google Scholar 

  85. Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol. 2018;15(1):1. https://doi.org/10.1186/s12989-017-0237-x.

    Article  CAS  Google Scholar 

  86. Ghio AJ, Hall A, Bassett MA, Cascio WE, Devlin RB. Exposure to concentrated ambient air particles alters hematologic indices in humans. Inhalation Toxicol. 2003;15(14):1465–78. https://doi.org/10.1080/08958370390249111.

    Article  CAS  Google Scholar 

  87. Møller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, et al. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol. 2011;41(4):339–68. https://doi.org/10.3109/10408444.2010.533152.

    Article  CAS  Google Scholar 

  88. Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid Redox Signal. 2018;28(9):797–818. https://doi.org/10.1089/ars.2017.7394.

    Article  CAS  Google Scholar 

  89. Silva TD, Alves C, Oliveira H, Duarte IF. Metabolic dysregulations underlying the pulmonary toxicity of atmospheric fine particulate matter: focus on energy-producing pathways and lipid metabolism. Air Qual Atmos Health. 2022;15(11):2051–65. https://doi.org/10.1007/s11869-022-01236-6.

    Article  CAS  Google Scholar 

  90. Tamagawa E, Bai N, Morimoto K, Gray C, Mui T, Yatera K, et al. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L79-85. https://doi.org/10.1152/ajplung.00048.2007.

    Article  CAS  Google Scholar 

  91. Jin X, Yu H, Wang B, Sun Z, Zhang Z, Liu QS, et al. Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. Part Fibre Toxicol. 2021;18(1):19. https://doi.org/10.1186/s12989-021-00411-4.

    Article  CAS  Google Scholar 

  92. •• Jin X, Ma Q, Sun Z, Yang X, Zhou Q, Qu G, et al. Airborne fine particles induce hematological effects through regulating the crosstalk of the kallikrein-kinin, complement, and coagulation systems. Environ Sci Technol. 2019;53(5):2840–51. https://doi.org/10.1021/acs.est.8b05817. This research for the first time reveals that airborne fine particulate matter induces the crosstalk among plasma zymogen systems.

    Article  CAS  Google Scholar 

  93. •• Zhang Y, Pei Y, Liu QS, Gao Y, Min K, Chen Z, et al. Tracing the plasma kallikrein-kinin system-activating component in the atmospheric particulate matter with different origins. J Hazard Mater. 2023;458:132044. https://doi.org/10.1016/j.jhazmat.2023.132044. This study is the first to fractionate atmospheric fine particulate matter to trace the bioactive components for KKS activation, and reveals that oxidized carbon black particles are the major contributor.

    Article  CAS  Google Scholar 

  94. KilinÇ E, Van Oerle R, Borissoff JI, Oschatz C, Gerlofs-Nijland ME, Janssen NA, et al. Factor XII activation is essential to sustain the procoagulant effects of particulate matter. J Thromb Haemostasis. 2011;9(7):1359–67. https://doi.org/10.1111/j.1538-7836.2011.04280.x.

    Article  CAS  Google Scholar 

  95. Wang B, Yan X, Chen F, Yang A, Lu Y, Wu Y. Plasma kallikrein contributes to ambient particulate matter-induced lung injury. Biochem Biophys Res Commun. 2019;518(3):409–15. https://doi.org/10.1016/j.bbrc.2019.07.060.

    Article  CAS  Google Scholar 

  96. Simak J, De Paoli S. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5). https://doi.org/10.1002/wnan.1448.

  97. Chen L, Glass JJ, De Rose R, Sperling C, Kent SJ, Houston ZH, et al. Influence of charge on hemocompatibility and immunoreactivity of polymeric nanoparticles. ACS Appl Bio Mater. 2018;1(3):756–67. https://doi.org/10.1021/acsabm.8b00220.

    Article  CAS  Google Scholar 

  98. Chen Z, Li F, Liu C, Guan J, Hu X, Du G, et al. Blood clot initiation by mesoporous silica nanoparticles: dependence on pore size or particle size? J Mater Chem B. 2016;4(44):7146–54. https://doi.org/10.1039/c6tb01946c.

    Article  CAS  Google Scholar 

  99. Tran HDN, Akther F, Xu ZP, Ta HT. Chapter 6 - Effects of nanoparticles on the blood coagulation system (nanoparticle interface with the blood coagulation system). In: Denizli A, Nguyen TA, Rajan M, Alam MF, Rahman K, editors. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood. Elsevier; 2022.

    Google Scholar 

  100. Del Turco S, Ciofani G, Cappello V, Parlanti P, Gemmi M, Caselli C, et al. Effects of cerium oxide nanoparticles on hemostasis: coagulation, platelets, and vascular endothelial cells. J Biomed Mater Res, Part A. 2019;107(7):1551–62. https://doi.org/10.1002/jbm.a.36669.

    Article  CAS  Google Scholar 

  101. Hao F, Geng F, Zhao X, Liu R, Liu QS, Zhou Q, et al. Chirality of gold nanocluster affects its interaction with coagulation factor XII. NanoImpact. 2021;22: 100321. https://doi.org/10.1016/j.impact.2021.100321.

    Article  CAS  Google Scholar 

  102. Khoury LR, Kost J, Enden G. Effects of surface coating on nanoparticle-protein adsorption selectivity. Regener Eng Transl Med. 2018;4(2):62–74. https://doi.org/10.1007/s40883-018-0049-z.

    Article  CAS  Google Scholar 

  103. Liu QS, Zhang Y, Sun Z, Gao Y, Zhou Q, Jiang G. A high-throughput assay for screening the abilities of per- and polyfluoroalkyl substances in inducing plasma kallikrein-like activity. Ecotoxicol Environ Saf. 2022;234: 113381. https://doi.org/10.1016/j.ecoenv.2022.113381.

    Article  CAS  Google Scholar 

  104. Simberg D, Zhang WM, Merkulov S, McCrae K, Park JH, Sailor MJ, et al. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J Control Release. 2009;140(3):301–5. https://doi.org/10.1016/j.jconrel.2009.05.035.

    Article  CAS  Google Scholar 

  105. Fan X, Wang S, Fang Y, Li P, Zhou W, Wang Z, et al. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Mater Sci Eng Mat Sci Eng C. 2020;109: 110649. https://doi.org/10.1016/j.msec.2020.110649.

    Article  CAS  Google Scholar 

  106. Duan J, Liang S, Yu Y, Li Y, Wang L, Wu Z, et al. Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology. 2018;12(5):470–84. https://doi.org/10.1080/17435390.2018.1461267.

    Article  CAS  Google Scholar 

  107. Visser M, Heitmeier S, Ten Cate H, Spronk HMH. Role of factor XIa and plasma kallikrein in arterial and venous thrombosis. Thromb Haemost. 2020;120(6):883–993. https://doi.org/10.1055/s-0040-1710013.

    Article  Google Scholar 

  108. Bird JE, Smith PL, Wang X, Schumacher WA, Barbera F, Revelli JP, et al. Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait. Thromb Haemost. 2012;107(6):1141–50. https://doi.org/10.1160/th-11-10-0682.

    Article  CAS  Google Scholar 

  109. Rosen ED, Gailani D, Castellino FJ. FXI is essential for thrombus formation following FeCl3-induced injury of the carotid artery in the mouse. Thromb Haemost. 2002;87(4):774–6.

    Article  CAS  Google Scholar 

  110. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146(6):882–93. https://doi.org/10.1038/sj.bjp.0706386.

    Article  CAS  Google Scholar 

  111. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Tariq S, Attoub S, et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part Fibre Toxicol. 2016;13(1):22. https://doi.org/10.1186/s12989-016-0132-x.

    Article  CAS  Google Scholar 

  112. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35(6):881–900. https://doi.org/10.1016/s1357-2725(02)00271-6.

    Article  CAS  Google Scholar 

  113. Hofman ZLM, de Maat S, Suffritti C, Zanichelli A, van Doorn C, Sebastian SAE, et al. Cleaved kininogen as a biomarker for bradykinin release in hereditary angioedema. J Allergy Clin Immunol. 2017;140(6):1700-3.e8. https://doi.org/10.1016/j.jaci.2017.07.012.

    Article  CAS  Google Scholar 

  114. Guerra-Ojeda S, Marchio P, Rueda C, Suarez A, Garcia H, Victor VM, et al. Cerium dioxide nanoparticles modulate antioxidant defences and change vascular response in the human saphenous vein. Free Radic Biol Med. 2022;193(Pt 2):694–701. https://doi.org/10.1016/j.freeradbiomed.2022.11.012.

    Article  CAS  Google Scholar 

  115. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci. 2005;99(1):6–38. https://doi.org/10.1254/jphs.srj05001x.

    Article  CAS  Google Scholar 

  116. Govers-Riemslag JWP, Smid M, Cooper JA, Bauer KA, Rosenberg RD, Hack CE, et al. The plasma kallikrein–kinin system and risk of cardiovascular disease in men. J Thromb Haemost. 2007;5(9):1896–903. https://doi.org/10.1111/j.1538-7836.2007.02687.x.

    Article  CAS  Google Scholar 

  117. Marcondes S, Antunes E. The plasma and tissue kininogen-kallikrein-kinin system: role in the cardiovascular system. Curr Med Chem Cardiovasc Hematol Agents. 2005;3(1):33–44. https://doi.org/10.2174/1568016052773351.

    Article  CAS  Google Scholar 

  118. Cockcroft JR, Chowienczyk PJ, Brett SE, Bender N, Ritter JM. Inhibition of bradykinin-induced vasodilation in human forearm vasculature by icatibant, a potent B2-receptor antagonist. Br J Clin Pharmacol. 1994;38(4):317–21. https://doi.org/10.1111/j.1365-2125.1994.tb04360.x.

    Article  CAS  Google Scholar 

  119. Witherow FN, Helmy A, Webb DJ, Fox KAA, Newby DE. Bradykinin contributes to the vasodilator effects of chronic angiotensin-converting enzyme inhibition in patients with heart failure. Circulation. 2001;104(18):2177–81. https://doi.org/10.1161/hc4301.098252.

    Article  CAS  Google Scholar 

  120. van Montfoort ML, Meijers JCM. Recent insights into the role of the contact pathway in thrombo-inflammatory disorders. Hematology. 2014;2014(1):60–5. https://doi.org/10.1182/asheducation.V2014.1.60.3882400.

    Article  Google Scholar 

  121. Kolte D, Shariat-Madar Z. Plasma kallikrein inhibitors in cardiovascular disease: an innovative therapeutic approach. Cardiol Rev. 2016;24(3):99–109. https://doi.org/10.1097/crd.0000000000000069.

    Article  Google Scholar 

  122. Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of inflammation in vascular disease-related perivascular adipose tissue dysfunction. Front Endocrinol (Lausanne). 2021;12: 710842. https://doi.org/10.3389/fendo.2021.710842.

    Article  Google Scholar 

  123. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0.

    Article  CAS  Google Scholar 

  124. Supreeya S, Amandeep G, Yulia G, Roman Z. Metabolic syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024.

    Google Scholar 

  125. Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. https://doi.org/10.1155/2021/1497449.

    Article  CAS  Google Scholar 

  126. Tomita H, Sanford RB, Smithies O, Kakoki M. The kallikrein–kinin system in diabetic nephropathy. Kidney Int. 2012;81(8):733–44. https://doi.org/10.1038/ki.2011.499.

    Article  CAS  Google Scholar 

  127. Härma MA, Dahlström EH, Sandholm N, Forsblom C, Groop PH, Lehto M. Decreased plasma kallikrein activity is associated with reduced kidney function in individuals with type 1 diabetes. Diabetologia. 2020;63(7):1349–54. https://doi.org/10.1007/s00125-020-05144-1.

    Article  CAS  Google Scholar 

  128. Maltais I, Bachvarova M, Maheux P, Perron P, Marceau F, Bachvarov D. Bradykinin B2 receptor gene polymorphism is associated with altered urinary albumin/creatinine values in diabetic patients. Can J Physiol Pharmacol. 2002;80(4):323–7. https://doi.org/10.1139/y02-036.

    Article  CAS  Google Scholar 

  129. Sharma JN, Al-Sherif GJ. Pharmacologic targets and prototype therapeutics in the kallikrein-kinin system: bradykinin receptor agonists or antagonists. The Scientific World J. 2006;6: 298486. https://doi.org/10.1100/tsw.2006.226.

    Article  CAS  Google Scholar 

  130. Sidorenkov G, Navis G. Safety of ACE inhibitor therapies in patients with chronic kidney disease. Expert Opin Drug Saf. 2014;13(10):1383–95. https://doi.org/10.1517/14740338.2014.951328.

    Article  CAS  Google Scholar 

  131. Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci U S A. 2004;101(36):13302–5. https://doi.org/10.1073/pnas.0405449101.

    Article  CAS  Google Scholar 

  132. Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Nishimatsu H, et al. Effects of vasodilatory antihypertensive agents on endothelial dysfunction in rats with ischemic acute renal failure. Hypertens Res. 2000;23(5):527–33. https://doi.org/10.1291/hypres.23.527.

    Article  CAS  Google Scholar 

  133. Kakoki M, McGarrah RW, Kim HS, Smithies O. Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(18):7576–81. https://doi.org/10.1073/pnas.0701617104.

    Article  CAS  Google Scholar 

  134. Zhu J, Wang H, Chen J, Wei W. Inhibition of plasma kallikrein–kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis. Immunopharmacol Immunotoxicol. 2018;40(2):134–48. https://doi.org/10.1080/08923973.2017.1418883.

    Article  CAS  Google Scholar 

  135. Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer. 2022;22(4):223–38. https://doi.org/10.1038/s41568-021-00436-z.

    Article  CAS  Google Scholar 

  136. Parenti A, Morbidelli L, Ledda F, Granger HJ, Ziche M. The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. Faseb j. 2001;15(8):1487–9.

    Article  CAS  Google Scholar 

  137. Ishihara K, Hayash I, Yamashina S, Majima M. A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol. 2001;87(4):318–26. https://doi.org/10.1254/jjp.87.318.

    Article  CAS  Google Scholar 

  138. Karnaukhova E. C1-inhibitor: structure, functional diversity and therapeutic development. Curr Med Chem. 2022;29(3):467–88. https://doi.org/10.2174/0929867328666210804085636.

    Article  CAS  Google Scholar 

  139. Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, et al. MicroScale thermophoresis: interaction analysis and beyond. J Mol Struct. 2014;1077:101–13. https://doi.org/10.1016/j.molstruc.2014.03.009.

    Article  CAS  Google Scholar 

  140. Branchford BR. Flood VH. 51 - bleeding and thrombosis. In: Kliegman RM, Toth H, Bordini BJ, Basel D, editors. Nelson pediatric symptom-based diagnosis: common diseases and their mimics. 2nd ed. Philadelphia: Elsevier; 2023.

    Google Scholar 

  141. Tokutake T, Baba H, Shimada Y, Takeda W, Sato K, Hiroshima Y, et al. Exogenous magnesium chloride reduces the activated partial thromboplastin times of lupus anticoagulant-positive patients. PLoS ONE. 2016;11(6): e0157835. https://doi.org/10.1371/journal.pone.0157835.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key R&D Program of China (2023YFC3706603) and the National Natural Science Foundation of China (22176203, 22176204, 22193053).

Author information

Authors and Affiliations

Authors

Contributions

YR.G.: Conceptualization, Investigation, Methodology, Visualization, Writing original draft; Writing review & editing; YZ.Z.: Investigation, Writing review & editing; ZW.L.: Investigation, Writing review & editing; QS.L.: Supervision, Writing review & editing; QF.Z.: Conceptualization, Resources, Funding acquisition, Supervision, Writing review & editing; GB.J.: Resources, Project administration. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qunfang Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, Y., Li, Z. et al. The Plasma Kallikrein-Kinin System: A Hematological Target for Environmental Contaminants. Curr Pollution Rep (2024). https://doi.org/10.1007/s40726-024-00308-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-024-00308-8

Keywords

Navigation