Skip to main content
Log in

Algae-Mediated Resource Recovery from Urban Wastewater

  • BIOLOGY AND POLLUTION (R BOOPATHY AND Y HONG, SECTION EDITORS)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Microalgae-mediated resource recovery and recycling of wastewater might be useful in producing biomass, biofertilizers, and environmentally acceptable bioproducts. This review aims to provide a comprehensive understanding of the challenges and opportunities of wastewater valorization to valuable algal biomass by opting a self-sustainable carbon-neutral approach.

Recent Findings

Various challenges and opportunities of using unsterilized urban wastewater are explored to provide insights into addressing the processing issues. Major wastewater challenges include turbidity with blackish appearance, emerging contaminants, pathogenic microbial community, and higher nutrient load. A brief comparison of sterilization techniques has been made, mainly focusing on principles, advantages, and limitations. Despite the challenges, it is found that microalgae-based resource recovery could be a viable and promising opportunity in a wastewater-driven integrated biorefinery paradigm.

Summary

Despite the availability of various wastewater treatment methods, microalgae-based wastewater treatment is promising, and carbon neutral approach which transforms the nutrients to valuable biomass, thereby reducing the nutrient load of the water. However, microalgal cultivation in wastewater encounters physical and biological challenges. In this article, challenges, opportunities, and sterilization methods of wastewater are critically reviewed concerning microalgae-based resource recovery from the urban wastewater. The processing of wastewater-produced algal biomass could be valorized into multiple products in minimal waste and carbon-neutral paradigm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. •• Qadir M, Drechsel P, Jiménez Cisneros B, Kim Y, Pramanik A, Mehta P, et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat Resour Forum. 2020;44(1):40–51. This paper is of prime importance regarding the nutreint recovery from wastewater and its potentail monetary benefits.

  2. • Jones ER, van Vliet MT, Qadir M, Bierkens MF. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst Sci Data. 2021;13(2):237–54. This paper provide the recent statistical information about global wastewater discharge and treatment.

  3. Khan S, Malik A. Environmental and health effects of textile industry wastewater. In: Environmental deterioration and human health. Springer; 2014. p. 55–71.

    Chapter  Google Scholar 

  4. Ravndal KT, Opsahl E, Bagi A, Kommedal R. Wastewater characterisation by combining size fractionation, chemical composition and biodegradability. Water Res. 2018;131:151–60.

    Article  CAS  Google Scholar 

  5. Tran NH, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018;133:182–207.

    Article  CAS  Google Scholar 

  6. Tytła M. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in poland–case study. Int J Environ Res Public Health. 2019;16(13):2430.

    Article  Google Scholar 

  7. Lau M, Monis P, Ryan G, Salveson A, Fontaine N, Blackbeard J, et al. Selection of surrogate pathogens and process indicator organisms for pasteurisation of municipal wastewater–a survey of literature data on heat inactivation of pathogens. Process Saf Environ Protect. 2020;133:301–14.

    Article  CAS  Google Scholar 

  8. • Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17(1):145–55. Provides overview of various treatmetn technologies.

  9. Lucas D, Castellet-Rovira F, Villagrasa M, Badia-Fabregat M, Barceló D, Vicent T, et al. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Sci Total Environ. 2018;610:1147–53.

    Article  Google Scholar 

  10. Paździor K, Bilińska L, Ledakowicz S. A review of the existing and emerging technologies in the combination of aops and biological processes in industrial textile wastewater treatment. Chem Eng J. 2019;376: 120597.

    Article  Google Scholar 

  11. Zhang L, Shen Z, Fang W, Gao G. Composition of bacterial communities in municipal wastewater treatment plant. Sci Total Environ. 2019;689:1181–91.

    Article  CAS  Google Scholar 

  12. Johansen MN. Microalgae: biotechnology, microbiology, and energy. Nova Science Publisher’s; 2012.

    Google Scholar 

  13. Sriram S, Seenivasan R. Microalgae cultivation in wastewater for nutrient removal. Algal Biomass Utln. 2012;3(2):9–13.

    Google Scholar 

  14. Lee CS, Lee S-A, Ko S-R, Oh H-M, Ahn C-Y. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015;68:680–91.

    Article  CAS  Google Scholar 

  15. Syafiuddin A, Boopathy R. Effect of algal cells on water pollution control. Curr Poll Rep. 2021;7:213–26.

    Article  CAS  Google Scholar 

  16. Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energy Rev. 2013;19:360–9.

    Article  CAS  Google Scholar 

  17. Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev. 2015;4(1):133–48.

    Article  CAS  Google Scholar 

  18. Abdel-Razek MA, Abozeid AM, Eltholth MM, Abouelenien FA, El-Midany SA, Moustafa NY, et al. Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov Vet. 2019;56(Suppl 22):61–73.

    Google Scholar 

  19. Amin M, Tahir F, Ashfaq H, Akbar I, Razzaque N, Haider MN, et al. Decontamination of industrial wastewater using microalgae integrated with biotransformation of the biomass to green products. Energy Nexus. 2022;6: 100089.

    Article  CAS  Google Scholar 

  20. Urrutia C, Yañez-Mansilla E, Jeison D. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res. 2019;43: 101659.

    Article  Google Scholar 

  21. Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, et al. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag. 2017;203:299–315.

    Article  CAS  Google Scholar 

  22. Liu XY, Hong Y. Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr Poll Rep. 2021;7(2):227–45.

    Article  Google Scholar 

  23. Shankar S, Singh J, Chakravarty N, Mathur A, Singh RP. Algal biorefinery: challenges and opportunities. In: Production of top 12 biochemicals selected by usdoe from renewable resources. Elsevier; 2022. p. 41–79.

    Chapter  Google Scholar 

  24. Yang Y-Y, Lusk MG. Nutrients in urban stormwater runoff: current state of the science and potential mitigation options. Curr Poll Rep. 2018;4:112–27.

    Article  Google Scholar 

  25. •• Reinecke D, Bischoff L-S, Klassen V, Blifernez-Klassen O, Grimm P, Kruse O, et al. Nutrient recovery from wastewaters by algal biofilm for fertilizer production part 1: case study on the techno-economical aspects at pilot-scale. Sep Purif Technol. 2023;305:122471. This paper present the technoeconomic analysis of wastewater derived fertilizer by using algal turf scrubber. It is one of few studies that estimate the pilot-scale potential of the proposed strategy.

  26. •• Acién Fernández FG, Gómez-Serrano C, Fernández-Sevilla JM. Recovery of nutrients from wastewaters using microalgae. Front Sust Food Syst. 2018;2. An important paper providing insight on the nutreitn recovery from wastewater. The potential of algae and associated challenges has been discussed.

  27. Rohadi N. Impact of adding sodium chloride to change of turbidity and iron concentration on treatment waste water using electrocoagulation process. In: J Phys Conf Ser. IOP Publishing; 2019.

    Google Scholar 

  28. Nagarajan D, Lee D-J, Chen C-Y, Chang J-S. Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol. 2020;302: 122817.

    Article  CAS  Google Scholar 

  29. Jamwal P, Mittal AK, Mouchel J-M. Efficiency evaluation of sewage treatment plants with different technologies in Delhi (India). Environ Monitor Assess. 2008;153(1):293.

    Google Scholar 

  30. Yusoff MS, Azwan AM, Zamri MFMA, Aziz HA. Removal of colour, turbidity, oil and grease for slaughterhouse wastewater using electrocoagulation method. In: AIP Conference Proceedings. AIP Publishing LLC; 2017.

    Google Scholar 

  31. Martínez C, Mairet F, Bernard O. Theory of turbid microalgae cultures. J Theor Biol. 2018;456:190–200.

    Article  Google Scholar 

  32. Zhuang L-L, Yu D, Zhang J, Liu F-F, Wu Y-H, Zhang T-Y, et al. The characteristics and influencing factors of the attached microalgae cultivation: a review. Renew Sust Energy Rev. 2018;94:1110–9.

    Article  CAS  Google Scholar 

  33. Ranglová K, Lakatos GE, Manoel JAC, Grivalský T, Estrella FS, Fernández FGA, et al. Growth, biostimulant and biopesticide activity of the macc-1 chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. 2021;53: 102136.

    Article  Google Scholar 

  34. • Mahapatra DM, Murthy G. Long term evaluation of a pilot scale multimodal algal bioprocess for treatment of municipal wastewater. J Clean Prod. 2021;127690. This study conducted year-long performance assessment of algae-based wastewater treatment facility at pilot-scale.

  35. Oh H-S, Ahn C-Y, Srivastava A, Oh H-M. Optimized cultivation of Ettlia sp. Yc001 in eutrophic pond water for nutrient removal and biomass production. Algae. 2018;33(4):319–27.

    Article  CAS  Google Scholar 

  36. Hwang J-H, Lee WH. Continuous photosynthetic biohydrogen production from acetate-rich wastewater: influence of light intensity. Int J Hydrog Energy. 2021;46(42):21812–21.

    Article  CAS  Google Scholar 

  37. Chen H, Wang Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biolog Rev. 2021;96(5):2373–91.

    Article  CAS  Google Scholar 

  38. Morin-Crini N, Lichtfouse E, Fourmentin M, Ribeiro ARL, Noutsopoulos C, Mapelli F, et al. Removal of emerging contaminants from wastewater using advanced treatments. A review Environ Chem Lett. 2022;20(2):1333–75.

    Article  CAS  Google Scholar 

  39. Maryjoseph S, Ketheesan B. Microalgae based wastewater treatment for the removal of emerging contaminants: a review of challenges and opportunities. Case Stud Chem Environ Eng. 2020;2: 100046.

    Article  Google Scholar 

  40. Molina D, de Carvalho JC, Júnior AIM, Faulds C, Bertrand E, Soccol CR. Biological contamination and its chemical control in microalgal mass cultures. Appl Microbiol Biotechnol. 2019;103(23):9345–58.

    Article  CAS  Google Scholar 

  41. • Lam TP, Lee T-M, Chen C-Y, Chang J-S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol. 2018;252:180–7. This paper review the techniques suitable to control biological contamination during algal cultivation.

  42. Fouilland E, Galès A, Beaugelin I, Lanouguère E, Pringault O, Leboulanger C. Influence of bacteria on the response of microalgae to contaminant mixtures. Chemosphere. 2018;211:449–55.

    Article  CAS  Google Scholar 

  43. Bauer A, Forchhammer K. Bacterial predation on cyanobacteria. Microb Physiol. 2021;31(2):99–108.

    Article  Google Scholar 

  44. Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278.

    Article  Google Scholar 

  45. Short SM. The ecology of viruses that infect eukaryotic algae. Environ Microbiol. 2012;14(9):2253–71.

    Article  Google Scholar 

  46. Suzuki K. Large-scale cultivation of Euglena. In: Schwartzbach S, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Advances in experimental medicine and biology, vol. 979. Springer; 2017. p. 285–93.

    Chapter  Google Scholar 

  47. Udaiyappan AFM, Hasan HA, Takriff MS, Abdullah SRS, Maeda T, Mustapha NA, et al. Microalgae-bacteria interaction in palm oil mill effluent treatment. J Water Process Eng. 2020;35:101203.

    Article  Google Scholar 

  48. • Shahid A, Malik S, Alam MA, Nahid N, Mehmood MA. The culture technology for freshwater and marine microalgae. In: Alam MA, Wang Z, editors. Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore: Springer Singapore; 2019. p. 21–44. This book chapter overview the cultureing technologies along with the risk of possible contamination and their prevention measures.

  49. Yun J-H, Cho D-H, Lee S, Heo J, Tran Q-G, Chang YK, et al. Hybrid operation of photobioreactor and wastewater-fed open raceway ponds enhances the dominance of target algal species and algal biomass production. Algal Res. 2018;29:319–29.

    Article  Google Scholar 

  50. Wang H, Zhang W, Chen L, Wang J, Liu T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol. 2013;128:745–50.

    Article  CAS  Google Scholar 

  51. Smith VH, Crews T. Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Res. 2014;4:23–34.

    Article  Google Scholar 

  52. Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Poll Res. 2016;23(9):8379–87.

    Article  CAS  Google Scholar 

  53. Yamasaki Y, Nagasoe S, Matsubara T, Shikata T, Shimasaki Y, Oshima Y, et al. Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (hirasaka) g. Hansen et moestrup by cell contact with cochlodinium polykrikoides margalef. Mar Biol. 2007;152(1):157–63.

    Article  Google Scholar 

  54. Rossi S, Casagli F, Mantovani M, Mezzanotte V, Ficara E. Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresour Technol. 2020;305:122995.

    Article  CAS  Google Scholar 

  55. •• Mondal M, Khanra S, Tiwari O, Gayen K, Halder G. Role of carbonic anhydrase on the way to biological carbon capture through microalgae–a mini review. Environ Progress Sust Energy. 2016;35(6):1605–15. The paper provide the deep insight on the regulartory mechasim of carbon capturing enzyme and its role in photosynthetic CO2 sequestration.

  56. Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L. Cultivation of chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol. 2011;102(21):9884–90.

    Article  Google Scholar 

  57. Shahid A, Malik S, Liu C-G, Musharraf SG, Siddiqui AJ, Khan F, et al. Characterization of a newly isolated cyanobacterium plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. J Water Process Eng. 2021;39:101702.

    Article  Google Scholar 

  58. Lin H, Gao W, Meng F, Liao B-Q, Leung K-T, Zhao L, et al. Membrane bioreactors for industrial wastewater treatment: a critical review. Crit Rev Environ Sci Technol. 2012;42(7):677–740.

    Article  CAS  Google Scholar 

  59. Rani S, Gunjyal N, Ojha CSP, Singh RP. Review of challenges for algae-based wastewater treatment: strain selection, wastewater characteristics, abiotic, and biotic factors. J Hazard Toxic Radioact Waste. 2021;25(2):03120004.

    Article  CAS  Google Scholar 

  60. Van T, Do C, Dinh CT, Dang MT, Dang Tran T, Giang LT. A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Bioresour Technol. 2022;345:126552.

    Article  Google Scholar 

  61. Xie Y, Li J, Ho S-H, Ma R, Shi X, Liu L, et al. Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresour Technol. 2020;314:123767.

    Article  CAS  Google Scholar 

  62. Zhen G, Lu X, Kato H, Zhao Y, Li Y-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew Sust Energy Rev. 2017;69:559–77.

    Article  CAS  Google Scholar 

  63. Nishshanka GKSH, Liyanaarachchi VC, Premaratne M, Nimarshana PHV, Ariyadasa TU, Kornaros M. Wastewater-based microalgal biorefineries for the production of astaxanthin and co-products: current status, challenges and future perspectives. Bioresour Technol. 2021;342:126018.

    Article  CAS  Google Scholar 

  64. Maejima Y, Kushimoto K, Muraguchi Y, Fukuda K, Miura T, Yamazoe A, et al. Proteobacteria and bacteroidetes are major phyla of filterable bacteria passing through 0.22 μm pore size membrane filter, in Lake Sanaru, Hamamatsu, Japan. Biosci Biotech Biochem. 2018;82(7):1260–3.

    Article  CAS  Google Scholar 

  65. Arima A, Tsutsui M, Harlisa IH, Yoshida T, Tanaka M, Yokota K, et al. Selective detections of single-viruses using solid-state nanopores. Sci Rep. 2018;8(1):1–7.

    Article  Google Scholar 

  66. Silindir M, Özer AY. Sterilization methods and the comparison of e-beam sterilization with gamma radiation sterilization. Fabad J Pharm Sci. 2009;34(1):43.

    Google Scholar 

  67. Chiang IZ, Huang WY, Wu JT. Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol. 2004;40(3):474–80.

    Article  CAS  Google Scholar 

  68. Xu M, Wu C, Zhou Y. Advancements in the Fenton process for wastewater treatment. Adv Oxid Process. 2020;61:61–77.

    Google Scholar 

  69. Gökkuş Ö, Yıldız YŞ. Application of electro-Fenton process for medical waste sterilization plant wastewater. Desal Water Treat. 2016;57(52):24934–45.

    Article  Google Scholar 

  70. Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag. 2012;93(1):154–68.

    Article  CAS  Google Scholar 

  71. Scialdone O, Proietto F, Galia A. Electrochemical production and use of chlorinated oxidants for the treatment of wastewater contaminated by organic pollutants and disinfection. Curr Opin Electrochem. 2021;27:100682.

    Article  CAS  Google Scholar 

  72. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001;77(3):247–55.

    Article  CAS  Google Scholar 

  73. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment ii: hybrid methods. Adv Environ Res. 2004;8(3):553–97.

    Article  CAS  Google Scholar 

  74. Arslan-Alaton I. A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater. Color Technol. 2003;119(6):345–53.

    Article  CAS  Google Scholar 

  75. Huggins T, Fallgren PH, Jin S, Ren Z. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater. J Microb Biochem Technol S. 2013;6(2).

  76. •• Malik S, Shahid A, Haider MN, Amin M, Betenbaugh MJ, Mehmood MA, et al. Prospects of multiproduct algal biorefineries involving cascading processing of the biomass employing a zero-waste approach. Curr Poll Rep. 2022;8(2):147–58. An important review that highlights the recent researchers in algal biorefinery, particularly focusing on the cascasde biomass processing to enahnce the process economy and efficiency.

  77. Ubando AT, Africa ADM, Maniquiz-Redillas MC, Culaba AB, Chen W-H, Chang J-S. Microalgal biosorption of heavy metals: a comprehensive bibliometric review. J Hazard Mater. 2021;402:123431.

    Article  CAS  Google Scholar 

  78. •• Khan AZ, Malik S, Mehmood MA, Shahid A, Shahzad T, Zhao X-Q et al. Two-stage algal cultivation for the biotransformation of urban wastewater’s pollutants into multiple bioproducts in a circular bioeconomy paradigm. Energy Conver Manag. 2022;273:116400. An important paper that discusses the first of its kind two-stage cultivation by using black wastewater to obtain fertilizer as first-stage product and pigments,biodiesl, and enzyme as second-stage product.

  79. Singh AK, Pandey AK. Potential biotechnological applications of microalgae grown in wastewater: a holistic approach. In: Application of microalgae in wastewater treatment. Springer; 2019. p. 233–47.

    Chapter  Google Scholar 

  80. Shahid A, Khan F, Ahmad N, Farooq M, Mehmood MA. Microalgal carbohydrates and proteins: synthesis, extraction, applications, and challenges. In: Microalgae biotechnology for food, health and high value products. Springer; 2020. p. 433–68.

    Chapter  Google Scholar 

  81. Alam MA, Xu J-L, Wang Z. Microalgae biotechnology for food, health and high value products. Springer; 2020.

    Book  Google Scholar 

  82. Muhammad G, Alam MA, Xiong W, Lv Y, Xu J-L. Microalgae biomass production: an overview of dynamic operational methods. In: Microalgae Biotechnology for Food, Health and High Value Products. Singapore: Springer; 2020. p. 415–32.

    Chapter  Google Scholar 

  83. Malik S, Khan F, Atta Z, Habib N, Haider MN, Wang N, et al. Microalgal flocculation: global research progress and prospects for algal biorefinery. Biotechnol Appl Biochem. 2020;67(1):52–60.

    Article  CAS  Google Scholar 

  84. Wang X, Hong Y. Microalgae biofilm and bacteria symbiosis in nutrient removal and carbon fixation from wastewater: a review. Curr Poll Rep. 2022;8(2):128–46.

    Article  CAS  Google Scholar 

  85. Shahid A, Khan AZ, Malik S, Liu C-G, Mehmood MA, Syafiuddin A, et al. Advances in green technologies for the removal of effluent organic matter from the urban wastewater. Curr Poll Rep. 2021;7:463–75.

    Article  CAS  Google Scholar 

  86. Campioni TS, de Azevedo Carvalho AF, de Figueiredo F, da Silva D, de Oliva NP. Xylanases and cellulases biosynthesis by selected fungi in a simple and economic bio system using sugarcane straw. Int J Environ Agri Biotechnol. 2020;5(1):217–30.

    Google Scholar 

  87. Huang X, Yang J, Zhang Y, Wu D. Effects of low pH water environment on growth and reproduction of two freshwater cladoceran varieties. Guizhou Agri Sci. 2018;46(3):88–92.

    Google Scholar 

  88. Kiran B, Pathak K, Kumar R, Deshmukh D. Phycoremediation: an eco-friendly approach to solve water pollution problems. In: Microbial applications, vol. 1. Springer; 2017. p. 3–28.

    Chapter  Google Scholar 

  89. Jin Q, Kirk MF. pH as a primary control in environmental microbiology: Thermodynamic perspective. Front Environ Sci. 2018;6:21.

    Article  Google Scholar 

  90. • Shahid A, Usman M, Atta Z, Musharraf SG, Malik S, Elkamel A et al. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. Bioresour Technol. 2021;333:125194. Novel local isolates have been evaluated for their growth and production of industrially viable compounds.

  91. Cortés AA, Sánchez-Fortún S, García M, Bartolomé MC. Effects of ph on the growth rate exhibited of the wild-type and cd-resistant dictyosphaerium Chlorelloides strains. Limnetica. 2018;37(2):229–38.

    Google Scholar 

  92. Brindhadevi K, Mathimani T, Rene ER, Shanmugam S, Chi NTL, Pugazhendhi A. Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel. 2021;284:119058.

    Article  CAS  Google Scholar 

  93. Mendes LBB, Vermelho AB. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuel. 2013;6(1):1–14.

    Google Scholar 

  94. Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model. 2007;208(2–4):205–14.

    Article  Google Scholar 

  95. Shao J, Peng L, Luo S, Yu G, Gu J-d, Lin S, et al. First report on the allelopathic effect of Tychonema bourrellyi (cyanobacteria) against Microcystis aeruginosa (cyanobacteria). J Appl Phycol. 2013;25(5):1567–73.

    Article  Google Scholar 

  96. Wang L, Zi J, Xu R, Hilt S, Hou X, Chang X. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing. Harmful Algae. 2017;61:56–62.

    Article  Google Scholar 

  97. Xiao Z, Zhang H, Xu Y, Yuan M, Jing X, Huang J, et al. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. Sep Purif Technol. 2017;174:466–73.

    Article  CAS  Google Scholar 

  98. Verma M, Tyagi I, Chandra R, Gupta VK. Adsorptive removal of Pb (ii) ions from aqueous solution using Cuo nanoparticles synthesized by sputtering method. J Mol Liq. 2017;225:936–44.

    Article  CAS  Google Scholar 

  99. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN. Role of nanomaterials in the treatment of wastewater: a review. Water. 2020;12(2):495.

    Article  CAS  Google Scholar 

  100. Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep. 2015;5:112–9.

    Article  Google Scholar 

  101. El-Sheekh MM, El-Kassas HY. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: a review. J Genetic Eng Biotechnol. 2016;14(2):299–310.

    Article  Google Scholar 

  102. Merin DD, Prakash S, Bhimba BV. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pacif J Trop Med. 2010;3(10):797–9.

    Article  CAS  Google Scholar 

  103. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts: BI. 2011;1(3):149.

    CAS  Google Scholar 

  104. Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem. 2013;15(3):650–5.

    Article  CAS  Google Scholar 

  105. Shen L, Wang J, Li Z, Fan L, Chen R, Wu X, et al. A high-efficiency Fe2O3 microalgae composite for heavy metal removal from aqueous solution. J Water Process Eng. 2020;33:101026.

    Article  Google Scholar 

  106. Sadegh H, Ali GA, Gupta VK, Makhlouf ASH, Shahryari-Ghoshekandi R, Nadagouda MN, et al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem. 2017;7(1):1–14.

    Article  CAS  Google Scholar 

  107. Vasistha S, Khanra A, Rai MP. Influence of microalgae-zno nanoparticle association on sewage wastewater towards efficient nutrient removal and improved biodiesel application: an integrated approach. J Water Process Eng. 2021;39:101711.

    Article  Google Scholar 

  108. Xu Y, Wang C, Hou J, Wang P, You G, Miao L, et al. Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor. Biores Technol. 2017;227:393–7.

    Article  CAS  Google Scholar 

  109. Bao C, Zhao J, Sun Y, Zhao X, Zhang X, Zhu Y, et al. Enhanced degradation of norfloxacin by ce-mediated fe-mil-101: catalytic mechanism, degradation pathways, and potential applications in wastewater treatment. Environ Sci Nano. 2021;8(8):2347–59.

    Article  CAS  Google Scholar 

  110. Xiong J-Q, Ru S, Zhang Q, Jang M, Kurade MB, Kim S-H, et al. Insights into the effect of cerium oxide nanoparticle on microalgal degradation of sulfonamides. Biores Technol. 2020;309:123452.

    Article  CAS  Google Scholar 

  111. Tang J, Zhu N, Zhu Y, Zamir SM, Wu Y. Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of ceo2 nanoparticles. Biores Technol. 2018;248:75–81.

    Article  CAS  Google Scholar 

  112. Xia C, Van Le Q, Chinnathambi A, Salmen SH, Alharbi SA, Tola S. Role of zno and fe2o3 nanoparticle on synthetic saline wastewater on growth, nutrient removal and lipid content of chlorella vulgaris for sustainable production of biofuel. Fuel. 2021;300:120924.

    Article  CAS  Google Scholar 

  113. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng, C. 2014;44:278–84.

    Article  CAS  Google Scholar 

  114. da Silva Ferreira V, ConzFerreira ME, Lima LMT, Frasés S, de Souza W, Sant’Anna C. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme Microb Technol. 2017;97:114–21.

    Article  Google Scholar 

  115. Bathi JR, Wright L, Khan E. Critical review of engineered nanoparticles: environmental concentrations and toxicity. Curr Pollut Rep. 2022;8:498–518.

    Article  CAS  Google Scholar 

  116. Bastiaens L, Van Roy S, Thomassen G, Elst K. 14 - biorefinery of algae: technical and economic considerations. In: Gonzalez-Fernandez C, Muñoz R, editors. Microalgae-based biofuels and bioproducts. Woodhead Publishing; 2017. p. 327–45.

    Chapter  Google Scholar 

  117. Chiu S-Y, Kao C-Y, Chen T-Y, Chang Y-B, Kuo C-M, Lin C-S. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Biores Technol. 2015;184:179–89.

    Article  CAS  Google Scholar 

  118. Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae scenedesmus sp. Ccnm 1077. Bioresour Technol. 2014;156:146–54.

    Article  CAS  Google Scholar 

  119. Rizza LS, Smachetti MES, Do Nascimento M, Salerno GL, Curatti L. Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res. 2017;22:140–7.

    Article  Google Scholar 

  120. Rani S, Ojha CSP. Chlorella sorokiniana for integrated wastewater treatment, biomass accumulation and value-added product estimation under varying photoperiod regimes: a comparative study. J Water Process Eng. 2021;39:101889.

    Article  Google Scholar 

  121. Khan AZ, Haider MN, Zhao X-Q, Bai F-W, Musharraf SG, Ahmad N, et al. Evaluation of resource recovery potential of the Pseudoscillatoria coralii berc01 under variable compositions of wastewater to produce biomass for cyanobacterium biorefinery. Sustain Energy Technol Assess. 2022;54:102804.

    Google Scholar 

  122. Aketo T, Hoshikawa Y, Nojima D, Yabu Y, Maeda Y, Yoshino T, et al. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J Biosci Bioeng. 2020;129(5):565–72.

    Article  CAS  Google Scholar 

  123. Moradi Z, Madadkar Haghjou M, Zarei M, Colville L, Raza A. Synergy of production of value-added bioplastic, astaxanthin and phycobilin co-products and direct green 6 textile dye remediation in spirulina platensis. Chemosphere. 2021;280:130920.

    Article  CAS  Google Scholar 

  124. Shahid A, Usman M, Atta Z, Musharraf SG, Malik S, Elkamel A, et al. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. Biores Technol. 2021;333:125194.

    Article  CAS  Google Scholar 

  125. Saravanan A, Senthil KP, Badawi M, Mohanakrishna G, Aminabhavi TM. Valorization of micro-algae biomass for the development of green biorefinery: Perspectives on techno-economic analysis and the way towards sustainability. Chem Eng J. 2023;453:139754.

    Article  CAS  Google Scholar 

  126. Sharmila VG, Rajesh Banu J, Dinesh Kumar M, Adish Kumar S, Kumar G. Algal biorefinery towards decarbonization: economic and environmental consideration. Bioresour Technol. 2022;364:128103.

    Article  CAS  Google Scholar 

  127. •• Dong T, Knoshaug EP, Davis R, Laurens LML, Van Wychen S, Pienkos PT, et al. Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res. 2016;19:316–23. They suggest the combined aglal processing as feasible strategy to obtain bioethanol and biodiesle from the single step. It resulted in reduced fuel price.

  128. •• Bose A, O’Shea R, Lin R, Long A, Rajendran K, Wall D, et al. Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system. Renew Sustain Energy Rev. 2022;170:112960. This review discussed the circular economy concept in biomethane and biofertilizers the applications.

  129. Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A. Cascading microalgae biorefinery: fast pyrolysis of dunaliella tertiolecta lipid extracted-residue. Algal Res. 2015;11:184–93.

    Article  Google Scholar 

  130. •• Haider MN, Liu C-G, Tabish TA, Balakrishnan D, Show P-L, Qattan SY, et al Resource recovery of the wastewater-derived nutrients into algal biomass followed by its cascading processing to multiple products in a circular bioeconomy paradigm. Fermentation. 2022;8. They evaluate the year-around growth wastewater treatment potential of cyanobacteria and suggest cascade biomass processing approach to obtain pigments, diesel, and enzymes from the single biomas.

Download references

Funding

Authors are thankful to the National Natural Science Foundation of China (No.22078308), Innovation Leadership Program in Sciences and Technologies for Central Plains Talent Plan (NO.214200510009), Program for Science & Technology Innovative Research Team in the University of Henan Province (No.22IRTSTHN007), and Higher Education Commission of Pakistan (NRPU 7300) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Aamer Mehmood, Ghulam Abbas Ashraf or Raj Boopathy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Proactive efforts are needed to reclaim and reuse wastewater to achieve sustainability

• Microalgae-mediated resource recovery offers multiple benefits

• Physical and biological parameters hinder the applicability of wastewater utilization

• Two-stage cultivation of microalgae in wastewater could be a sustainable approach

• Wastewater-derived integrated biorefinery may help to achieve the sustainability goals

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Amin, M., Kamal, I. et al. Algae-Mediated Resource Recovery from Urban Wastewater. Curr Pollution Rep 9, 243–258 (2023). https://doi.org/10.1007/s40726-023-00254-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00254-x

Keywords

Navigation