Skip to main content

Advertisement

Log in

Thermal Hydrolysis to Enhance Anaerobic Digestion Performance of Wastewater Sludge

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this review is to provide a closer check on the recent development in the thermal hydrolysis (TH) of wastewater sludge for anaerobic digestion performance enhancement with the focuses on the solubilization of sludge and macromolecules, organic micropollutants removal, TH-AD integration, and TH process (THP) energy balances.

Recent Findings

The recent research has developed improved understanding of the thermal hydrolysis mechanisms of proteins, carbohydrates, and lipid components of sludge and the characteristics of soluble COD in TH-treated sludge. Studies showed that TH treatment can partially remove micropollutants, but it has limited impact on the bioavailability of those compounds. For the THP and AD integration, the post TH and intermediate TH treatment have been introduced as two alternatives of the TH pretreatment, which have demonstrated the ability to achieve higher methane yields and VSS reduction.

Summary

TH is a well-established technology for anaerobic digestion performance enhancement due to its ability to improve digestion loading rate, sludge biodegradability, and sludge dewaterability. The recent studies elucidated the mechanisms of sludge TH, characteristics, and biodegradability of hydrolysis products, fate of nutrient and micropollutants in sludge TH, and the effect of AD-TH integration on methane production and VS reduction. Future work in sludge TH is still needed to reveal the mechanisms of production of refractory organics during TH treatment, optimize the design and operation of the ITHP-AD and AD-PsTHP processes, and improve the energy efficiency of TH-AD processes through energy reduction and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Katsiris N, Kouzeli-Katsiri A. Bound water content of biological sludges in relation to filtration and dewatering. Water Res. 1987;21:1319–27.

    Article  CAS  Google Scholar 

  2. Barber WPF. Thermal hydrolysis for sewage treatment: a critical review. Water Res. Elsevier Ltd; 2016;104:53–71. Available from: https://doi.org/10.1016/j.watres.2016.07.069

  3. Panter K, Auty D. Thermal hydrolysis, anaerobic digestion and dewatering of sewage sludge as a best first step in sludge strategy: full scale examples in large projects in the UK and Ireland. 4th Munic Water Qual. Sun City, South Africa; 2013.

  4. Haug RT, Stuckey DC, Gossett JM, Mccarty PL. Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. Water Pollut Control Fed. 1978:50(1):73–85.

  5. Pilli S, Yan S, Tyagi RD, Surampalli RY. Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol. 2015;45:669–702.

    Article  CAS  Google Scholar 

  6. Bougrier C, Philippedelge J, Enecar EH. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J. 2008;139:236–44.

    Article  CAS  Google Scholar 

  7. Sapkaite I, Barrado E, Fdz-Polanco F, Pérez-Elvira SI. Optimization of a thermal hydrolysis process for sludge pre-treatment. J Environ Manag. 2017;192:25–30.

    Article  CAS  Google Scholar 

  8. Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. Bioresour Technol. 2014;155:289–99.

  9. Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater. 2003;98(1–3):51–67.

  10. Suárez-Iglesias O, Urrea JL, Oulego P, Collado S, Díaz M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Sci Total Environ. 2017;584–585:921–34.

  11. Müller JA. Prospects and problems of sludge pre-treatment processes. Water Sci Technol. 2001;44(10):121–8.

  12. Tyagi VK, Lo SL. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol. 2011;10(3):215–42.

  13. Abelleira-Pereira JM, Pérez-Elvira SI, Sánchez-Oneto J, de la Cruz R, Portela JR, Nebot E. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Water Res. 2015;71:330–40.

    Article  CAS  Google Scholar 

  14. Camacho P, Deleris S, Geaugey V, Ginestet P, Paul E. A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge. Water Sci Technol. 2002;46:79–87.

    Article  CAS  Google Scholar 

  15. Wilson CA, Novak JT. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. Elsevier Ltd. 2009;43:4489–98.

    Article  CAS  Google Scholar 

  16. Yang D, Dai X, Song L, Dai L, Dong B. Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability. Bioresour Technol. Elsevier; 2019;290:121753. Available from: https://doi.org/10.1016/j.biortech.2019.121753.

  17. Lu D, Sun F, Zhou Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment. Bioresour Technol. Elsevier; 2018;266:60–7. Available from: https://doi.org/10.1016/j.biortech.2018.06.059.

  18. Han Y, Zhuo Y, Peng D, Yao Q, Li H, Qu Q. Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion. Bioresour Technol. Elsevier; 2017;244:836–43. Available from: https://doi.org/10.1016/j.biortech.2017.07.166

  19. Chen S, Dong B, Dai X, Wang H, Li N, Yang D. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion. Waste Manag. Elsevier Ltd; 2019;88:309–18. Available from: https://doi.org/10.1016/j.wasman.2019.03.060.

  20. Díaz I, Díaz-Curbelo A, Pérez-Lemus N, Fdz-Polanco F, Pérez-Elvira SI. Traceability of organic contaminants in the sludge line of wastewater treatment plants: a comparison study among schemes incorporating thermal hydrolysis treatment and the conventional anaerobic digestion. Bioresour Technol. Elsevier Ltd; 2020;305:123028. Available from: https://doi.org/10.1016/j.biortech.2020.123028.

  21. Mills N. Unlocking the full energy potential of sewage sludge. Dr Thesis. 2015;117. Available from: http://epubs.surrey.ac.uk/809984/40/Mills - Unlocking the full energy potential of sewage sludge.pdf.

  22. Taboada-Santos A, Lema JM, Carballa M. Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurations. Waste Manag. Elsevier Ltd; 2019;92:30–8. Available from: https://doi.org/10.1016/j.wasman.2019.05.003.

  23. Chen H, Rao Y, Cao L, Shi Y, Hao S, Luo G, et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields. Chem Eng J. Elsevier; 2019;357:367–75. Available from: https://doi.org/10.1016/j.cej.2018.09.180.

  24. Chen S, Li N, Dong B, Zhao W, Dai L, Dai X. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: organic matter degradation and methanogenic pathways. J Hazard Mater. Elsevier B.V.; 2018;342:1–9. Available from: https://doi.org/10.1016/j.jhazmat.2017.08.012

  25. Wandera SM, Westerholm M, Qiao W, Yin D, Jiang MM, Dong R. The correlation of methanogenic communities’ dynamics and process performance of anaerobic digestion of thermal hydrolyzed sludge at short hydraulic retention times. Bioresour Technol. Elsevier; 2019;272:180–7. Available from: https://doi.org/10.1016/j.biortech.2018.10.023.

  26. Rus E, Mills N, Shana A, Perrault A, Fountain P, Thorpe RB, et al. The intermediate thermal hydrolysis process: results from pilot testing and techno-economic assessment. Water Pract Technol. IWA Publishing. 2017;12:406–22.

    Article  Google Scholar 

  27. Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B. Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol. Elsevier Ltd. 2015;198:896–906.

    Article  CAS  Google Scholar 

  28. Kor-Bicakci G, Eskicioglu C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew Sust Energ Rev. Elsevier Ltd; 2019;110:423–43. Available from: https://doi.org/10.1016/j.rser.2019.05.002.

  29. Tanaka S, Kobayashi T, Kamiyama K, Bildan MLNS. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci Technol. 1997;35:209–15.

    Article  CAS  Google Scholar 

  30. Carrère H, Bougrier C, Castets D, Delgenès JP. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment. J Environ Sci Health, Part A Tox Hazard Subst Environ Eng. 2008;43:1551–5.

    Article  Google Scholar 

  31. Higgins MJ, Beightol S, Mandahar U, Suzuki R, Xiao S, Lu HW, le T, Mah J, Pathak B, DeClippeleir H, Novak JT, al-Omari A, Murthy SN Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: impacts on anaerobic digestion, dewatering and filtrate characteristics. Water Res. Elsevier Ltd; 2017;122:557–69. Available from: https://doi.org/10.1016/j.watres.2017.06.016

  32. Bougrier C, Delgenès JP, Carrère H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem Eng J. 2007;34:20–7.

    Article  CAS  Google Scholar 

  33. Dai Q, Ma L, Ren N, Ning P, Guo Z, Xie L, et al. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum. Water Res. Elsevier Ltd; 2018;142:337–46. Available from: https://doi.org/10.1016/j.watres.2018.06.009.

  34. Liu Y, Chang S, Defersha FM. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor. Water Res. Elsevier Ltd; 2015;78:133–43. Available from: https://doi.org/10.1016/j.watres.2015.04.007

  35. Pavlovsky L, Sturtevant RA, Younger JG, Solomon MJ. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir; 2015;31(6):2036–42.

  36. Zhang D, Jiang H, Chang J, Sun J, Tu W, Wang H. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresour Technol. Elsevier; 2019;279:92–100. Available from: https://doi.org/10.1016/j.biortech.2019.01.077.

  37. Nawar WW. Thermal degradation of lipids. J Agric Food Chem. 1969;17(1):18–21.

  38. Lalman JA, Bagley DM. Anaerobic degradation and inhibitory effects of linoleic acid. Water Res. 2000;34:4220–8.

    Article  CAS  Google Scholar 

  39. Kabara JJ, Vrable R, Osteopathic C. Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids. 1977;12:753–9.

  40. Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99:4044–64.

    Article  CAS  Google Scholar 

  41. Kabouris JC, Tezel U, Pavlostathis SG, Engelmann M, Todd AC, Gillette RA. The anaerobic biodegradability of municipal sludge and fat, oil, and grease at mesophilic conditions. Water Environ Res. 2008;80(3):212–21.

  42. Dwyer J, Starrenburg D, Tait S, Barr K, Batstone DJ, Lant P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. Elsevier Ltd; 2008;42:4699–709. Available from: https://doi.org/10.1016/j.watres.2008.08.019

  43. Takashima M, Tanaka Y. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge. Water Sci Technol. 2010;62:2647–54.

    Article  CAS  Google Scholar 

  44. Azman S, Khadem AF, Plugge CM, Stams AJM, Bec S, Zeeman G. Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl Microbiol Biotechnol. 2017;101:889–901. Available from:. https://doi.org/10.1007/s00253-016-8010-x.

    Article  CAS  Google Scholar 

  45. Zhang D, Feng Y, Huang H, Khunjar W, Wang Z. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge. Environ Int. Elsevier; 2020;138:105629. Available from: https://doi.org/10.1016/j.envint.2020.105629.

  46. Filer J, Ding HH, Chang S. Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water (Switzerland). 2019;11(5):921–49.

  47. Duong TH, Grolle K, Nga TTV, Zeeman G, Temmink H, Van Eekert M. Protein hydrolysis and fermentation under methanogenic and acidifying conditions. Biotechnol Biofuels. BioMed Central; 2019;12:1–10. Available from: https://doi.org/10.1186/s13068-019-1592-7.

  48. Toutian V, Barjenbruch M, Unger T, Loderer C, Remy C. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge. Water Res. Elsevier Ltd; 2020;171:115383. Available from: https://doi.org/10.1016/j.watres.2019.115383.

  49. Metcalf, Eddy. Wastewater engineering: treatment and resource recovery. 5th ed. Los Altos: McGraw Hill Education; 2014.

    Google Scholar 

  50. Jeong SY, Chang SW, Ngo HH, Guo W, Nghiem LD, Banu JR, et al. Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content. Waste Manag. Elsevier Ltd; 2019;85:214–21. Available from: https://doi.org/10.1016/j.wasman.2018.12.026.

  51. Ramsay IR, Pullammanappallil PC. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation. 2001;12:247–56.

    Article  CAS  Google Scholar 

  52. Hansen KH, Angelidaki I, Ahring BK. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res. 1998;32:5–12.

    Article  CAS  Google Scholar 

  53. Duan N, Dong B, Wu B, Dai X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresour Technol. Elsevier Ltd; 2012;104:150–6. Available from: https://doi.org/10.1016/j.biortech.2011.10.090

  54. Achbergerová L, Nahálka J. Polyphosphate - an ancient energy source and active metabolic regulator. Microb Cell Factories. 2011;10:1–14.

    Article  Google Scholar 

  55. Han X, Wang F, Zhou B, Chen H, Yuan R, Liu S, et al. Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR. Sci Total Environ. Elsevier B.V.; 2019;688:1–9. Available from: https://doi.org/10.1016/j.scitotenv.2019.06.017.

  56. Zhang X, Li R. Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: degradation and solid-liquid distribution. Bioresour Technol. Elsevier; 2018;255:266–72. Available from: https://doi.org/10.1016/j.biortech.2018.01.100.

  57. Narumiya M, Nakada N, Yamashita N, Tanaka H. Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. J Hazard Mater. Elsevier B.V.; 2013;260:305–12. Available from: https://doi.org/10.1016/j.jhazmat.2013.05.032

  58. Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sust Energ Rev. Elsevier. 2015;50:346–62.

    Article  CAS  Google Scholar 

  59. Taboada-Santos A, Braz GHR, Fernandez-Gonzalez N, Carballa M, Lema JM. Thermal hydrolysis of sewage sludge partially removes organic micropollutants but does not enhance their anaerobic biotransformation. Sci Total Environ. Elsevier B.V.; 2019;690:534–42. Available from: https://doi.org/10.1016/j.scitotenv.2019.06.492.

  60. Zhang J, Li N, Dai X, Tao W, Jenkinson IR, Li Z. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: new insights through structure evolution. Water Res. Elsevier Ltd; 2018;131:177–85. Available from: https://doi.org/10.1016/j.watres.2017.12.042.

  61. Aemig Q, Chéron C, Delgenès N, Jimenez J, Houot S, Steyer J, et al. Distribution of polycyclic aromatic hydrocarbons ( PAHs ) in sludge organic matter pools as a driving force of their fate during anaerobic digestion. Waste Manag Elsevier Ltd. 2016;48:389–96.

    Article  CAS  Google Scholar 

  62. Gonzalez-Gil L, Mauricio-Iglesias M, Carballa M, Lema JM. Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems. Water Res. Elsevier Ltd. 2018;142:115–28.

    Article  CAS  Google Scholar 

  63. Filer J. Anaerobic digestion system incorporating intermediate thermal treatment: a laboratory scale investigation into enhancing methane productivity. University of Guelph; 2019.

  64. Zhang Y, Xu S, Cui M, Wong JWC. Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge. Waste Manag. Elsevier Ltd; 2019;94:68–76. Available from: https://doi.org/10.1016/j.wasman.2019.05.047.

  65. Ortega-Martinez E, Sapkaite I, Fdz-Polanco F, Donoso-Bravo A. From pre-treatment toward inter-treatment. Getting some clues from sewage sludge biomethanation. Bioresour Technol. Elsevier Ltd; 2016;212:227–35. Available from: https://doi.org/10.1016/j.biortech.2016.04.049

  66. Nielsen HB, Thygesen A, Thomsen AB, Schmidt JE. Anaerobic digestion of waste activated sludge-comparison of thermal pretreatments with thermal inter-stage treatments. J Chem Technol Biotechnol. 2011;86:238–45.

    Article  CAS  Google Scholar 

  67. Mehari BB, Chang S, Hong Y, Chen H. Temperature-phased biological hydrolysis and thermal hydrolysis pretreatment for anaerobic digestion performance enhancement. Water (Switzerland). 2018;10(12):1812–29.

  68. Campo G, Cerutti A, Zanetti M, Scibilia G, Lorenzi E, Ruffino B. Enhancement of waste activated sludge (WAS) anaerobic digestion by means of pre- and intermediate treatments. Technical and economic analysis at a full-scale WWTP. J Environ Manag. 2018;216:372–82.

  69. Takashima M, Tanaka Y. Acidic thermal post-treatment for enhancing anaerobic digestion of sewage sludge. J Environ Chem Eng. Elsevier Ltd. 2014;2:773–9.

    Article  CAS  Google Scholar 

  70. Ruile S, Schmitz S, Mönch-Tegeder M, Oechsner H. Degradation efficiency of agricultural biogas plants - a full-scale study. Bioresour Technol. 2015;178:341–9.

    Article  CAS  Google Scholar 

  71. Sambusiti C, Monlau F, Ficara E, Musatti A, Rollini M, Barakat A, et al. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process Technol. Elsevier B.V. 2015;137:359–65.

    Article  CAS  Google Scholar 

  72. Bjerg-Nielsen M, Ward AJ, Møller HB, Ottosen LDM. Influence on anaerobic digestion by intermediate thermal hydrolysis of waste activated sludge and co-digested wheat straw. Waste Manag. Elsevier Ltd; 2018;72:186–92. Available from: https://doi.org/10.1016/j.wasman.2017.11.021.

  73. Biswas R, Ahring BK, Uellendahl H. Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure. Water Sci Technol. 2012;66:1751–8.

    Article  Google Scholar 

  74. Yang D, Hu C, Dai L, Liu Z, Dong B, Dai X. Post-thermal hydrolysis and centrate recirculation for enhancing anaerobic digestion of sewage sludge. Waste Manag. Elsevier Ltd; 2019;92:39–48. Available from: https://doi.org/10.1016/j.wasman.2019.04.044.

  75. Svensson K, Kjørlaug O, Higgins MJ, Linjordet R, Horn SJ. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: effect on methane yields, dewaterability and solids reduction. Water Res. 2018;132:158–66.

    Article  CAS  Google Scholar 

  76. Takashima M, Kudoh Y, Tabata N. Complete anaerobic digestion of activated sludge by combining membrane separation and alkaline heat post-treatment. Water Sci Technol. 1996;34:477–81.

    Article  CAS  Google Scholar 

  77. Battimelli A, Millet C, Delgenès JP, Moletta R. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci Technol. 2003;48:61–8.

    Article  CAS  Google Scholar 

  78. Jagadabhi PS, Lehtomäki A, Rintala J. Co-digestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solids of the digestate. Environ Technol. 2008;29:1085–93.

    Article  CAS  Google Scholar 

  79. Li H, Zou S, Li C, Jin Y. Alkaline post-treatment for improved sludge anaerobic digestion. Bioresour Technol. 2013;140:187–91.

    Article  CAS  Google Scholar 

  80. Tian X, Trzcinski A. Effects of physico-chemical post-treatments on the semi-continuous anaerobic digestion of sewage sludge. Environments. 2017;4:49.

    Article  Google Scholar 

  81. Yap SD, Astals S, Lu Y, Peces M, Jensen PD, Batstone DJ, et al. Humic acid inhibition of hydrolysis and methanogenesis with different anaerobic inocula. Waste Manag. 2018;80:130–6.

    Article  CAS  Google Scholar 

  82. Kjorlaug O, Janka E, Bakke R, Nilsen PJ. Methane production from the Cambi SolidStream centrate in an upflow anaerobic sludge blanket reactor. Iwa Spec Conf Sludge Manag Sludgetech 2017;11.

  83. Kjorlaug O, Nilsen PJ, Solheim OE, Kruchen H. Cambi solidStream® high dry solids technology development of test procedures and report from the first full-scale installation in Germany. SludgeTECH. 2015. p. 81.

  84. Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrère H. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci. 2015;8:2600–21.

    Article  CAS  Google Scholar 

  85. Takashima M. Examination on process configurations incorporating thermal treatment for anaerobic digestion of sewage sludge. J Environ Eng. 2008;134:543–9.

    Article  CAS  Google Scholar 

  86. Shana AD, Ouki S, Asaadi M, Pearce P. A study of the impact of an innovative intermediate thermal hydrolysis process on the performance of anaerobic sewage sludge digestion process. IWA World Congress on Water, Climate, and Energy, 13-18 may, Dublin, Ireland, 2012.

  87. Shana A, Ouki S, Asaadi M, Pearce P, Mancini G. The impact of intermediate thermal hydrolysis on the degradation kinetics of carbohydrates in sewage sludge. Bioresour Technol. 2013;137:239–44.

    Article  CAS  Google Scholar 

  88. Chauzy J, Kline M, Cabral C, Dimassimo R, Eveillard F. The different solutions proposed by thermal hydrolysis process: successful implementation of LD, DL and DLD configurations on several WWTP. Proceedings of Water Environment Federation Residuals and Biosolids Conference. 2014(2):1–13.

  89. Cano R, Pérez-Elvira SI, Fdz-Polanco F. Energy feasibility study of sludge pretreatments: a review. Appl Energy. Elsevier Ltd. 2015;149:176–85.

    Article  CAS  Google Scholar 

  90. Pérez-Elvira SI, Fdz-Polanco F. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study. Water Sci Technol. 2012;65:1839–46.

    Article  Google Scholar 

  91. Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies internal rate of return. Waste Manag. Elsevier Ltd; 2014;34:185–95. Available from: https://doi.org/10.1016/j.wasman.2013.08.024

  92. Combined Heat and Power Basics, Department of Energy, USA. https://www.energy.gov/eere/amo/combined-heat-and-power-basics. Available from: https://www.energy.gov/eere/amo/combined-heat-and-power-basics.

  93. Mills N. The influence of heat balance on the economics of advanced anaerobic digestion processes. 16th Biosolids - Org Resour Conf - Exhib (Leeds AquaEnviro). 2011.

  94. Williams T., Burrowes P. Thermal hydrolysis offerings and performance. Eur Biosolids Org Resour Conf 15–16 November, Edinburgh, Scotl. 2016.

  95. Barbe B. Cambi thermal hydrolysis theory, market, and the future. WEF eShowcase 2016.

  96. Liao Z, Svensson K, Ge Y, Zhang Y, Deng D, Han C, et al. THP advanced anaerobic digestion for compact and efficient biosolids management in cold climates. IWA Water Management in Cold climates Conference, 12-24 January, Harbin, P. R. of China. 2020.

  97. Panter K, Shana A, Water T. Lessons learnt and performance of crawley sludge centre upgrade using new compact B6 THP system keywords mark II Cambi Crawley STW before Cambi after Cambi. Eur Biosolids Org Resour Conf 15–16 November, Edinburgh, Scotl LESSONS. 2016.

  98. Gurieff N, Hoejsgaard S, Nielsen B, Boyd J, Kline M. Successful application of the first EXELYS™ continuous thermal hydrolysis system in an operational WWTP in Denmark. Proc Water Environ Fed. 2012(16):1011–24.

Download references

Acknowledgments

The authors thank Ontario Ministry of Economic Development and Trade for the support of Ontario Research Fund: Research Excellenc-9 (RE09-077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Filer, J. Thermal Hydrolysis to Enhance Anaerobic Digestion Performance of Wastewater Sludge. Curr Pollution Rep 6, 452–467 (2020). https://doi.org/10.1007/s40726-020-00163-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00163-3

Keywords

Navigation