Skip to main content
Log in

Control of the Ionomer Contents in the Electrode Catalyst Layer for Enhanced Performance of Methanol–Water Electrolyzers for Hydrogen Production

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract   

Methanol–water electrolysis technology, which electrochemically produces hydrogen using methanol instead of water, has received significant attention given that the substantial amount of power required by conventional water electrolysis can be drastically reduced when using it. This study investigates the electrochemical performance and microstructural characteristics of methanol–water electrolyzers according to the ionomer-to-carbon (I/C) ratio range of 0.5–2.0 in electrode catalyst layers. The lowest voltage at the same current density is observed at an I/C ratio of 1.5 at the anode. When the I/C ratio was 2.0, the voltage was observed to be approximately 25% higher than that at an I/C ratio of 1.5. A microstructural analysis shows a decrease of the specific surface area due to catalyst agglomeration at I/C ratios higher than 1.5. The results of the BET analysis showed a decrease in the surface area with an increase in the I/C ratio. Furthermore, when the I/C ratio exceeds 1.5, separated layers of excessive amounts of ionomer are observed, possibly blocking the electron conduction pathways in the electrode catalyst layer. The energy conversion efficiency of the developed methanol–water electrolyzer was assessed in an current density range of 0.08–0.80 A cm−2, demonstrating values between 81.4% and 92.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463–491. https://doi.org/10.1039/C8EE01157E

    Article  Google Scholar 

  2. Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. Energy Conversion and Management, 291, 117294. https://doi.org/10.1016/j.enconman.2023.117294

    Article  Google Scholar 

  3. Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  Google Scholar 

  4. Kumar, S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002

    Article  Google Scholar 

  5. Coutanceau, C., & Baranton, S. (2016). Electrochemical conversion of alcohols for hydrogen production: A short overview. Wiley Interdisciplinary Reviews: Energy and Environment, 5(4), 388–400. https://doi.org/10.1002/wene.193

    Article  Google Scholar 

  6. Take, T., Tsurutani, K., & Umeda, M. (2007). Hydrogen production by methanol–water solution electrolysis. Journal of Power Sources, 164(1), 9–16. https://doi.org/10.1016/j.jpowsour.2006.10.011

    Article  Google Scholar 

  7. Guenot, B., Cretin, M., & Lamy, C. (2015). Clean hydrogen generation from the electrocatalytic oxidation of methanol inside a proton exchange membrane electrolysis cell (PEMEC): Effect of methanol concentration and working temperature. Journal of Appled Electrochemistry, 45, 973–981. https://doi.org/10.1007/s10800-015-0867-3

    Article  Google Scholar 

  8. Lamy, C., Guenot, B., Cretin, M., & Pourcelly, G. (2015). Kinetics analysis of the electrocatalytic oxidation of methanol inside a DMFC working as a PEM electrolysis cell (PEMEC) to generate clean hydrogen. Electrochimica Acta, 177, 352–358. https://doi.org/10.1016/j.electacta.2015.02.069

    Article  Google Scholar 

  9. Ju, H., Giddey, S., & Badwal, S. P. (2017). The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis. Electrochimica Acta, 229, 39–47. https://doi.org/10.1016/j.electacta.2017.01.106

    Article  Google Scholar 

  10. Pham, A. T., Baba, T., & Shudo, T. (2013). Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: Influence of change in grain diameter and material of porous metal flow field. International Journal of Hydrogen Energy, 38(24), 9945–9953. https://doi.org/10.1016/j.ijhydene.2013.05.171

    Article  Google Scholar 

  11. Uhm, S., Jeon, H., Kim, T. J., & Lee, J. (2012). Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process. Journal of Power Sources, 198, 218–222. https://doi.org/10.1016/j.jpowsour.2011.09.083

    Article  Google Scholar 

  12. Sasikumar, G., Muthumeenal, A., Pethaiah, S. S., Nachiappan, N., & Balaji, R. (2008). Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. International Journal of Hydrogen Energy, 33(21), 5905–5910. https://doi.org/10.1016/j.ijhydene.2008.07.013

    Article  Google Scholar 

  13. Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151

    Article  Google Scholar 

  14. Saveleva, V. A., Wang, L., Luo, W., Zafeiratos, S., Ulhaq-Bouillet, C., Gago, A. S., & Savinova, E. R. (2016). Uncovering the stabilization mechanism in bimetallic ruthenium–iridium anodes for proton exchange membrane electrolyzers. Journal of Physical Chemistry Letters, 7(16), 3240–3245. https://doi.org/10.1021/acs.jpclett.6b01500

    Article  Google Scholar 

  15. Fabbri, E., Habereder, A., Waltar, K., Kötz, R., & Schmidt, T. J. (2014). Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 4(11), 3800–3821. https://doi.org/10.1039/C4CY00669K

    Article  Google Scholar 

  16. Damjanovic, A., Dey, A., & Bockris, J. M. (1966). Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt-Rh alloy electrodes. Journal of the Electrochemical Society, 113(7), 739. https://doi.org/10.1149/1.2424104

    Article  Google Scholar 

  17. Ban, H. J., Kim, M. Y., Kim, D., Lim, J., Kim, T. W., Jeong, C., & Kim, H. S. (2019). Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis. Journal of Electrochemical Science and Technology, 10(1), 22–28. https://doi.org/10.5229/JECST.2019.10.1.22

    Article  Google Scholar 

  18. Narayanan, S. R., Chun, W., Jeffries-Nakamura, B., & Valdez, T. I. (2002). U.S. Patent No. 6,368,492. Washington, DC: U.S. Patent and Trademark Office.

  19. Pham, A. T., Baba, T., Sugiyama, T., & Shudo, T. (2013). Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: Influence of PTFE treatment of the anode gas diffusion layer. International Journal of Hydrogen Energy, 38(1), 73–81. https://doi.org/10.1016/j.ijhydene.2012.10.036

    Article  Google Scholar 

  20. Bernt, M., & Gasteiger, H. A. (2016). Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. Journal of the Electrochemical Society, 163(11), F3179. https://doi.org/10.1149/2.0231611jes

    Article  Google Scholar 

  21. Zhang, S., Wang, Z., Zhang, R., He, Y., & Cen, K. (2023). Comprehensive study and optimization of membrane electrode assembly structural composition in proton exchange membrane water electrolyzer. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.05.280

    Article  Google Scholar 

  22. Xu, W., & Scott, K. (2010). The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. International Journal of Hydrogen Energy, 35(21), 12029–12037. https://doi.org/10.1016/j.ijhydene.2010.08.055

    Article  Google Scholar 

  23. Sapountzi, F. M., Divane, S. C., Papaioannou, E. I., Souentie, S., & Vayenas, C. G. (2011). The role of Nafion content in sputtered IrO2 based anodes for low temperature PEM water electrolysis. J Electrochem Chem, 662(1), 116–122. https://doi.org/10.1016/j.jelechem.2011.04.005

    Article  Google Scholar 

  24. Trinke, P., Keeley, G. P., Carmo, M., Bensmann, B., & Hanke-Rauschenbach, R. (2019). Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content. Journal of the Electrochemical Society, 166(8), F465. https://doi.org/10.1149/2.0171908jes

    Article  Google Scholar 

  25. Deng, K., Liu, P., Liu, X., Li, H., Tian, W., & Ji, J. (2023). Synergism of CoO-Ni(OH)2 nanosheets and MOF-derived CNTs array for methanol electrolysis. Green Chemistry, 25(23), 9837–9846. https://doi.org/10.1039/D3GC03179A

    Article  Google Scholar 

  26. Anantharaj, S., Li, M., Arulraj, R., Eswaran, K., Fidha, S., Murugesan, R., & Noda, S. (2023). A tri-functional self-supported electrocatalyst featuring mostly NiTeO3 perovskite for H2 production via methanol–water co-electrolysis. Chem Comm, 59(85), 12755–12758. https://doi.org/10.1039/D3CC02568C

    Article  Google Scholar 

  27. Li, L., Zhang, L., Gou, L., Wei, S., Hou, X., & Wu, L. (2023). High-performance methanol electrolysis towards energy-saving hydrogen production: Using Cu2O-Cu decorated Ni2P nanoarray as bifunctional monolithic catalyst. Chemical Engineering Journal, 454, 140292. https://doi.org/10.1016/j.cej.2022.140292

    Article  Google Scholar 

  28. Jiang, Y. C., Sun, H. Y., Li, Y. N., He, J. W., Xue, Q., Tian, X., & Chen, Y. (2021). Bifunctional Pd@ RhPd Core-Shell Nanodendrites for Methanol Electrolysis. ACS Applied Materials & Interfaces, 13(30), 35767–35776. https://doi.org/10.1021/acsami.1c09029

    Article  Google Scholar 

  29. Sanchez, C., Espinos, F. J., Barjola, A., Escorihuela, J., & Compañ, V. (2022). Hydrogen Production from Methanol-Water Solution and Pure Water Electrolysis Using Nanocomposite Perfluorinated Sulfocationic Membranes Modified by Polyaniline. Polym, 14(21), 4500. https://doi.org/10.3390/polym14214500

    Article  Google Scholar 

  30. U.S. Department of Energy (DOE). (no date) Retrieved April 3, 2023. https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis

  31. Lee, M. R., Lee, H. Y., Yim, S. D., Kim, C. S., Shul, Y. G., Kucernak, A., & Shin, D. (2018). Effects of ionomer carbon ratio and ionomer dispersity on the performance and durability of MEAs. Fuel Cells, 18(2), 129–136. https://doi.org/10.1002/fuce.201700178

    Article  Google Scholar 

  32. Hwang, Y. S., Choi, H., Cho, G. Y., Lee, Y. H., & Cha, S. W. (2014). Effect of compression thickness on performance of gas diffusion layer of direct methanol fuel cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 1(3), 215–221. https://doi.org/10.1007/s40684-014-0027-y

    Article  Google Scholar 

  33. Rozain, C., & Millet, P. (2014). Electrochemical characterization of polymer electrolyte membrane water electrolysis cells. Electrochimica Acta, 131, 160–167. https://doi.org/10.1016/j.electacta.2014.01.099

    Article  Google Scholar 

  34. Suermann, M., Pătru, A., Schmidt, T. J., & Büchi, F. N. (2017). High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. International Journal of Hydrogen Energy, 42(17), 12076–12086. https://doi.org/10.1016/j.ijhydene.2017.01.224

    Article  Google Scholar 

  35. Becker, H., Murawski, J., Shinde, D. V., Stephens, I. E., Hinds, G., & Smith, G. (2023). Impact of impurities on water electrolysis: A review. Sustain Energy Fuels. https://doi.org/10.1039/D2SE01517J

    Article  Google Scholar 

  36. Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619. https://doi.org/10.1351/pac198557040

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the framework of a research and development program of the Korea Institute of Energy Research (KIER) (C1-2449). This research was also financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Virtual Engineering Platform Development Program” (G02F09901883411) supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seog-Young Yoon or Dong-Hyun Peck.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, DH., Kang, S., Yoon, SY. et al. Control of the Ionomer Contents in the Electrode Catalyst Layer for Enhanced Performance of Methanol–Water Electrolyzers for Hydrogen Production. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00618-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00618-8

Keywords

Navigation