Skip to main content
Log in

Abstract

A variety of natural biological tissues (e.g., skin, ligaments, and blood vessels) exhibit a J-shaped stress–strain behavior, combining soft, compliant mechanics and large levels of stretchability together with a natural ‘strain-limiting’ mechanism to prevent damage from excessive strain. This review provides an extensive overview of recent advancements in the field of strain-engineered stretchable constructs, with a particular emphasis on strain-limiting constructs mimicking the J-shaped stress–strain behavior. The use of synthetic materials that have a similar stress–strain behavior to the target could be helpful for many potential applications, such as tissue engineering (to simulate the J-shaped nonlinear mechanical properties of biological tissues) and biomedical devices (to enable natural, comfortable integration of stretchable electronics with biological tissues/organs). In recent years, several studies have been conducted on these constructs because of their exceptional ability to withstand large deformations with electrical stability in stretchable and wearable electronics. One of the purposes of this review is to summarize the recent fabrication approaches used for developing strain-engineered stretchable constructs mimicking the J-shaped stress–strain/strain-limiting behavior of biological tissues. The review also highlights recent applications of strain-limiting constructs, which have shown their potential in incorporating into a broad range of innovative fields, such as soft robotics, biomedical devices, wearable and stretchable electronics, and human–machine interfaces. Lastly, we concluded the review by pointing out some limitations and future prospective of the strain-engineered stretchable constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Peng, S., Yu, Y., Wu, S., & Wang, C. H. (2021). Conductive polymer nanocomposites for stretchable electronics: material selection, design, and applications. ACS Applied Materials & Interfaces, 13, 43831–43854. https://doi.org/10.1021/acsami.1c15014

    Article  Google Scholar 

  2. Lv, J., Thangavel, G., & Lee, P. S. (2022). Reliability of printed stretchable electronics based on nano/micro materials for practical applications. Nanoscale, 15, 434–449. https://doi.org/10.1039/d2nr04464a

    Article  Google Scholar 

  3. Lu, N., & Kim, D.-H. (2014). Flexible and stretchable electronics paving the way for soft robotics. Soft Robot, 1, 53–62. https://doi.org/10.1089/soro.2013.0005

    Article  Google Scholar 

  4. Trung, T. Q., & Lee, N. E. (2017). Recent progress on stretchable electronic devices with intrinsically stretchable components. Advanced Materials, 29, 1603167. https://doi.org/10.1002/adma.201603167

    Article  Google Scholar 

  5. Khang, D. Y., Rogers, J. A., & Lee, H. H. (2009). Mechanical buckling: mechanics, metrology, and stretchable electronics. Advanced Functional Materials, 19, 1526–1536. https://doi.org/10.1002/adfm.200801065

    Article  Google Scholar 

  6. Zhu, P., Peng, H., & Rwei, A. Y. (2022). Flexible, wearable biosensors for digital health. Med Nov Technol Devices, 14, 100118. https://doi.org/10.1016/j.medntd.2022.100118

    Article  Google Scholar 

  7. Chen, X., Parida, K., Wang, J., et al. (2017). A Stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Applied Materials & Interfaces, 9, 42200–42209. https://doi.org/10.1021/acsami.7b13767

    Article  Google Scholar 

  8. Feiner, R., & Dvir, T. (2017). Tissue-electronics interfaces: From implantable devices to engineered tissues. Nature Reviews Materials, 3, 1–16. https://doi.org/10.1038/natrevmats.2017.76

    Article  Google Scholar 

  9. Wu, S., Peng, S., Yu, Y., & Wang, C. H. (2020). Strategies for designing stretchable strain sensors and conductors. Adv Mater Technol, 5, 1–25. https://doi.org/10.1002/admt.201900908

    Article  Google Scholar 

  10. Gong, X., Yang, Q., Zhi, C., & Lee, P. S. (2021). Stretchable energy storage devices: From materials and structural design to device assembly. Advanced Energy Materials, 11, 2003308. https://doi.org/10.1002/aenm.202003308

    Article  Google Scholar 

  11. Huang YA, Su Y, Jiang S (2023) Flexible electronics: Theory and method of structural design

  12. Mechael, S. S., D’Amaral, G. M., Wu, Y., et al. (2022). The synergistic effect of topography and stiffness as a crack engineering strategy for stretchable electronics. J Mater Chem C, 11, 497–512. https://doi.org/10.1039/d2tc03459j

    Article  Google Scholar 

  13. Cho, H., Lee, B., Jang, D., et al. (2022). Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Mater Horizons, 9, 2053–2075. https://doi.org/10.1039/d2mh00470d

    Article  Google Scholar 

  14. Hanif, A., Bag, A., Zabeeb, A., et al. (2020). A skin-inspired substrate with spaghetti-like multi-nanofiber network of stiff and elastic components for stretchable electronics. Advanced Functional Materials, 30, 1–10. https://doi.org/10.1002/adfm.202003540

    Article  Google Scholar 

  15. Lee, C. H., Ma, Y., Jang, K. I., et al. (2015). Soft core/shell packages for stretchable electronics. Advanced Functional Materials, 25, 3698–3704. https://doi.org/10.1002/adfm.201501086

    Article  Google Scholar 

  16. Jang, K. I., Han, S. Y., Xu, S., et al. (2014). Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nature Communications, 5, 1–10. https://doi.org/10.1038/ncomms5779

    Article  Google Scholar 

  17. Qi, D., Zhang, K., Tian, G., et al. (2021). Stretchable electronics based on PDMS substrates. Advanced Materials, 33, 1–25. https://doi.org/10.1002/adma.202003155

    Article  Google Scholar 

  18. Ahn, J.-H., & Je, J. H. (2012). Stretchable electronics: materials, architectures and integrations. Journal of Physics. D. Applied Physics, 45, 103001. https://doi.org/10.1088/0022-3727/45/10/103001

    Article  Google Scholar 

  19. Rogers JA, Someya T, Huang Y (2010) Materials and Mechanics for Stretchable Electronics. Science (80- ) 327:1603–1607. https://doi.org/10.1126/science.1182383

  20. Dong, W., Zhu, C., Hu, W., et al. (2018). Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry. Journal of Semiconductors. https://doi.org/10.1088/1674-4926/39/1/014001

    Article  Google Scholar 

  21. Suo, Z. (2012). Mechanics of stretchable electronics and soft machines. MRS Bulletin, 37, 218–225. https://doi.org/10.1557/mrs.2012.32

    Article  Google Scholar 

  22. Huang, J., Wang, L., Jin, Y., et al. (2020). Tuning the rigidity of silk fibroin for the transfer of highly stretchable electronics. Advanced Functional Materials. https://doi.org/10.1002/adfm.202001518

    Article  Google Scholar 

  23. McCoul, D., Hu, W., Gao, M., et al. (2016). Recent advances in stretchable and transparent electronic materials. Advanced Electronic Materials, 2, 1–51. https://doi.org/10.1002/aelm.201500407

    Article  Google Scholar 

  24. Mazzotta, A., Carlotti, M., & Mattoli, V. (2021). Conformable on-skin devices for thermo-electro-tactile stimulation: Materials, design, and fabrication. Materials Advances, 2, 1787–1820. https://doi.org/10.1039/d0ma00817f

    Article  Google Scholar 

  25. Lou, Z., Wang, L., Jiang, K., et al. (2020). Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering: R: Reports, 140, 100523. https://doi.org/10.1016/j.mser.2019.100523

    Article  Google Scholar 

  26. Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H., & Bao, Z. (2013). 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Advanced materials, 25(42), 5997–6038.

    Article  Google Scholar 

  27. Ma, Z., Kong, D., Pan, L., & Bao, Z. (2020). Skin-inspired electronics: Emerging semiconductor devices and systems. Journal of Semiconductors. https://doi.org/10.1088/1674-4926/41/4/041601

    Article  Google Scholar 

  28. Wu, W. (2019). Stretchable electronics: Functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials, 20, 187–224. https://doi.org/10.1080/14686996.2018.1549460

    Article  Google Scholar 

  29. Casey, D. T., Bou Jawde, S., Herrmann, J., et al. (2021). Percolation of collagen stress in a random network model of the alveolar wall. Science and Reports, 11, 1–9. https://doi.org/10.1038/s41598-021-95911-w

    Article  Google Scholar 

  30. Wang, Y., Gong, S., Wang, S. J., et al. (2018). Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano, 12, 9742–9749. https://doi.org/10.1021/acsnano.8b05019

    Article  Google Scholar 

  31. Libanori, R., Erb, R. M., Reiser, A., et al. (2012). Stretchable heterogeneous composites with extreme mechanical gradients. Nature Communications, 3, 1–9. https://doi.org/10.1038/ncomms2281

    Article  Google Scholar 

  32. Xue, Z., Song, H., Rogers, J. A., Zhang, Y., & Huang, Y. (2020). Mechanically-guided structural designs in stretchable inorganic electronics. Advanced Materials, 32(15), 1902254.

    Article  Google Scholar 

  33. Yu, K. J., Yan, Z., Han, M., & Rogers, J. A. (2017). Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex Electron, 1, 1–13. https://doi.org/10.1038/s41528-017-0003-z

    Article  Google Scholar 

  34. Wang, C., Wang, C., Huang, Z., & Xu, S. (2018). Materials and structures toward soft electronics. Advanced Materials, 30, 1–49. https://doi.org/10.1002/adma.201801368

    Article  Google Scholar 

  35. Qian, Y., Zhang, X., Xie, L., et al. (2016). Stretchable organic semiconductor devices. Advanced Materials, 28, 9243–9265. https://doi.org/10.1002/adma.201601278

    Article  Google Scholar 

  36. Chen, J., Zhu, Y., Chang, X., et al. (2021). Recent progress in essential functions of soft electronic skin. Advanced Functional Materials. https://doi.org/10.1002/adfm.202104686

    Article  Google Scholar 

  37. Han, W. B., Yang, S. M., Rajaram, K., & Hwang, S. W. (2022). Materials and fabrication strategies for biocompatible and biodegradable conductive polymer composites toward bio-integrated electronic systems. Advanced Sustainable Systems, 6, 1–17. https://doi.org/10.1002/adsu.202100075

    Article  Google Scholar 

  38. Han, W. B., Ko, G. J., Jang, T. M., & Hwang, S. W. (2021). Materials, devices, and applications for wearable and implantable electronics. ACS Applied Electronic Materials, 3, 485–503. https://doi.org/10.1021/acsaelm.0c00724

    Article  Google Scholar 

  39. Cheng, W., Zhou, Z., Pan, M., et al. (2019). Stretchable spin valve with strain-engineered wrinkles grown on elastomeric polydimethylsiloxane. Journal of Physics D. https://doi.org/10.1088/1361-6463/aaf7df

    Article  Google Scholar 

  40. Chen, Z., Huang, G., Trase, I., et al. (2016). Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting. Physical Review Applied, 5, 1–33. https://doi.org/10.1103/PhysRevApplied.5.017001

    Article  Google Scholar 

  41. Wang, W., Wang, S., Rastak, R., et al. (2021). Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 4, 143–150. https://doi.org/10.1038/s41928-020-00525-1

    Article  Google Scholar 

  42. Kim, D. W., Kong, M., & Jeong, U. (2021). Interface design for stretchable electronic devices. Advancement of Science, 8, 1–29. https://doi.org/10.1002/advs.202004170

    Article  Google Scholar 

  43. Cai, M., Nie, S., Du, Y., et al. (2019). Soft elastomers with programmable stiffness as strain-isolating substrates for stretchable electronics. ACS Applied Materials & Interfaces, 11, 14340–14346. https://doi.org/10.1021/acsami.9b01551

    Article  Google Scholar 

  44. Ma, Y., Feng, X., Rogers, J. A., et al. (2017). Design and application of “J-shaped” stress-strain behavior in stretchable electronics: A review. Lab on a Chip, 17, 1689–1704. https://doi.org/10.1039/c7lc00289k

    Article  Google Scholar 

  45. Duprey A, Burgeur R (2008) Mechanical properties of the aorta. Eur Soc Vasc Surg

  46. Ji, X. L., Li, H. M., & Li, L. X. (2019). A constitutive relation for the tissue composed of type-I collagen fibers under uniaxial tension. Journal of the Mechanical Behavior of Biomedical Materials, 97, 222–228. https://doi.org/10.1016/j.jmbbm.2019.05.029

    Article  Google Scholar 

  47. Robi, K., Jakob, N., Matevz, K., & Matjaz, V. (2013). The physiology of sports injuries and repair processes. Curr Issues Sport Exerc Med. https://doi.org/10.5772/54234

    Article  Google Scholar 

  48. Sharabi, M. (2022). Structural mechanisms in soft fibrous tissues: a review. Front Mater, 8, 1–28. https://doi.org/10.3389/fmats.2021.793647

    Article  Google Scholar 

  49. Connizzo, B. K., Yannascoli, S. M., & Soslowsky, L. J. (2013). Structure-function relationships of postnatal tendon development: A parallel to healing. Matrix Biology, 32, 106–116. https://doi.org/10.1016/j.matbio.2013.01.007

    Article  Google Scholar 

  50. Eom, S., Park, S. M., Hong, H., et al. (2020). Hydrogel-assisted electrospinning for fabrication of a 3D complex tailored nanofiber macrostructure. ACS Applied Materials & Interfaces, 12, 51212–51224. https://doi.org/10.1021/acsami.0c14438

    Article  Google Scholar 

  51. Park, S. M., Lee, K., pil, Huh M Il, et al. (2019). Development of an in vitro 3D choroidal neovascularization model using chemically induced hypoxia through an ultra-thin, free-standing nanofiber membrane. Materials Science and Engineering C, 104, 109964. https://doi.org/10.1016/j.msec.2019.109964

    Article  Google Scholar 

  52. Youn, J., & Kim, D. S. (2022). Engineering porous membranes mimicking in vivo basement membrane for organ-on-chips applications. Biomicrofluidics, 10(1063/5), 0101397.

    Google Scholar 

  53. Jang, K. I., Chung, H. U., Xu, S., et al. (2015). Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 6, 1–11. https://doi.org/10.1038/ncomms7566

    Article  Google Scholar 

  54. Song, E., Huang, Y., Huang, N., et al. (2022). Recent advances in microsystem approaches for mechanical characterization of soft biological tissues. Microsystems Nanoeng. https://doi.org/10.1038/s41378-022-00412-z

    Article  Google Scholar 

  55. Yang, Y., Song, X., Li, X., et al. (2018). Recent progress in biomimetic additive manufacturing technology: From materials to functional structures. Advanced Materials, 30, 1–34. https://doi.org/10.1002/adma.201706539

    Article  Google Scholar 

  56. Eom, S., Jo, J., & Kim, D. S. (2022). Investigation of Effects of electrospinning parameters on transcription quality of nanofibrous bifurcated-tubular scaffold. Macromolecular Materials and Engineering, 307, 1–8. https://doi.org/10.1002/mame.202200030

    Article  Google Scholar 

  57. Ma, Q., Cheng, H., Jang, K. I., et al. (2016). A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. Journal of the Mechanics and Physics of Solids, 90, 179–202. https://doi.org/10.1016/j.jmps.2016.02.012

    Article  MathSciNet  Google Scholar 

  58. Ma, Q., & Zhang, Y. (2016). Mechanics of fractal-inspired horseshoe microstructures for applications in stretchable electronics. J Appl Mech Trans ASME, 83, 1–19. https://doi.org/10.1115/1.4034458

    Article  Google Scholar 

  59. Fan, J. A., Yeo, W.-H., Su, Y., et al. (2014). Fractal design concepts for stretchable electronics. Nature Communications, 5, 1–8. https://doi.org/10.1038/ncomms4266

    Article  Google Scholar 

  60. Han, S., Kim, M. K., Wang, B., et al. (2016). Mechanically reinforced skin-electronics with networked nanocomposite elastomer. Advanced Materials, 28, 10257–10265. https://doi.org/10.1002/adma.201603878

    Article  Google Scholar 

  61. Sadri, B., Goswami, D., Sala De Medeiros, M., et al. (2018). Wearable and implantable epidermal paper-based electronicsfile:///D:/Review paper/REFERENCES/Adv Healthcare materials—2013—Naik—generation of spatially aligned collagen fiber networks through microtransfer. ACS Applied Materials & Interfaces, 10, 31061–31068. https://doi.org/10.1021/acsami.8b11020

    Article  Google Scholar 

  62. Naik, N., Caves, J., Chaikof, E. L., & Allen, M. G. (2014). Generation of spatially aligned collagen fiber networks through microtransfer molding. Advanced Healthcare Materials, 3, 367–374. https://doi.org/10.1002/adhm.201300112

    Article  Google Scholar 

  63. Lei, M., Hong, W., Zhao, Z., et al. (2019). 3D Printing of auxetic metamaterials with digitally reprogrammable shape. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.9b06081

    Article  Google Scholar 

  64. Yan, D., Chang, J., Zhang, H., et al. (2020). Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications, 11, 1–11. https://doi.org/10.1038/s41467-020-14996-5

    Article  Google Scholar 

  65. Jiang, Y., & Wang, Q. (2016). Highly-stretchable 3D-architected mechanical metamaterials. Science and Reports, 6, 1–11. https://doi.org/10.1038/srep34147

    Article  Google Scholar 

  66. Choi, J. W., Youn, J., Kim, D. S., & Park, T. E. (2023). Human iPS-derived blood-brain barrier model exhibiting enhanced barrier properties empowered by engineered basement membrane. Biomaterials, 293, 121983. https://doi.org/10.1016/j.biomaterials.2022.121983

    Article  Google Scholar 

  67. Haider, A., Haider, S., Rao Kummara, M., et al. (2020). Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. Journal of Saudi Chemical Society, 24, 186–215. https://doi.org/10.1016/j.jscs.2020.01.002

    Article  Google Scholar 

  68. Bhushan S, Singh S, Maiti TK, et al (2022) Scaffold fabrication techniques of biomaterials for bone tissue engineering : a critical review

  69. Huang, Y., Song, J., Yang, C., et al. (2019). Scalable manufacturing and applications of nanofibers. Materials Today, 28, 98–113. https://doi.org/10.1016/j.mattod.2019.04.018

    Article  Google Scholar 

  70. Lee, S. J., Nam, Y., Rim, Y. A., et al. (2021). Perichondrium-inspired permeable nanofibrous tube well promoting differentiation of hiPSC-derived pellet toward hyaline-like cartilage pellet. Biofabrication. https://doi.org/10.1088/1758-5090/ac1e76

    Article  Google Scholar 

  71. Song, L., Ci, L., Lv, L., et al. (2004). Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Advanced Materials, 16, 1529–1534. https://doi.org/10.1002/adma.200306393

    Article  Google Scholar 

  72. Hu, L., Kim, H. S., Lee, J. Y., et al. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4, 2955–2963. https://doi.org/10.1021/nn1005232

    Article  Google Scholar 

  73. Amjadi, M., Pichitpajongkit, A., Lee, S., et al. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 8, 5154–5163. https://doi.org/10.1021/nn501204t

    Article  Google Scholar 

  74. Cho, S., Kang, Dh., Lee, H., et al. (2021). Highly stretchable sound-in-display electronics based on strain-insensitive metallic nanonetworks. Advanced Science, 8, 1–10. https://doi.org/10.1002/advs.202001647

    Article  Google Scholar 

  75. Fan, Y. J., Li, X., Kuang, S. Y., et al. (2018). Highly Robust. Transparent, and Breathable Epidermal Electrode. https://doi.org/10.1021/acsnano.8b04245

    Article  Google Scholar 

  76. Lee S, Franklin S, Hassani FA, et al (2020) Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science (80- ) 370:966–970. https://doi.org/10.1126/science.abc9735

  77. Wang C, Xia K, Zhang M, et al (2017) An All-Silk-Derived Dual-Mode E—skin for Simultaneous Temperature—Pressure Detection. 39484–39492. https://doi.org/10.1021/acsami.7b13356

  78. Park, S. J., Lee, B. K., Na, M. H., & Kim, D. S. (2013). Melt-spun shaped fibers with enhanced surface effects: Fiber fabrication, characterization and application to woven scaffolds. Acta Biomaterialia, 9, 7719–7726. https://doi.org/10.1016/j.actbio.2013.05.001

    Article  Google Scholar 

  79. Jiao, Y., Li, C., Liu, L., et al. (2020). Construction and application of textile-based tissue engineering scaffolds: A review. Biomaterials Science, 8, 3574–3600. https://doi.org/10.1039/d0bm00157k

    Article  Google Scholar 

  80. Jiang, C., Wang, K., Liu, Y., et al. (2021). Application of textile technology in tissue engineering: A review. Acta Biomaterialia, 128, 60–76. https://doi.org/10.1016/j.actbio.2021.04.047

    Article  Google Scholar 

  81. Tamayol, A., Akbari, M., Annabi, N., et al. (2013). Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances, 31, 669–687. https://doi.org/10.1016/j.biotechadv.2012.11.007

    Article  Google Scholar 

  82. Kun M, Chan C, Ramakrishna S, et al (2019) Textile-based scaffolds for tissue engineering, Second Edi. Elsevier Ltd

  83. Pedde, R. D., Mirani, B., Navaei, A., et al. (2017). Emerging biofabrication strategies for engineering complex tissue constructs. Advanced Materials, 29, 1–27. https://doi.org/10.1002/adma.201606061

    Article  Google Scholar 

  84. Ozbolat, I. T. (2017). Roadmap to organ printing. Bioprinting, 3D, 243–269. https://doi.org/10.1016/b978-0-12-803010-3.00008-1

    Article  Google Scholar 

  85. Sun, W., Starly, B., Daly, A. C., et al. (2020). The bioprinting roadmap. Biofabrication. https://doi.org/10.1088/1758-5090/ab5158

    Article  Google Scholar 

  86. Vaquette, C., Kahn, C., Frochot, C., et al. (2010). Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: A novel composite scaffold for ligament tissue engineering. Journal of Biomedical Materials Research, 94, 1270–1282. https://doi.org/10.1002/jbm.a.32801

    Article  Google Scholar 

  87. Hennecke, K., Redeker, J., Kuhbier, J. W., et al. (2013). Bundles of spider silk, braided into sutures, resist basic cyclic tests: Potential use for flexor tendon repair. PLoS ONE, 8, 1–12. https://doi.org/10.1371/journal.pone.0061100

    Article  Google Scholar 

  88. Pagán, A., Aznar-Cervantes, S. D., Pérez-Rigueiro, J., et al. (2019). Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering. Journal of Biomedical Materials Research, 107, 2209–2215. https://doi.org/10.1002/jbm.b.34300

    Article  Google Scholar 

  89. Almeida, L. R., Martins, A. R., Fernandes, E. M., et al. (2013). New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability. Acta Biomaterialia, 9, 8167–8181. https://doi.org/10.1016/j.actbio.2013.05.019

    Article  Google Scholar 

  90. Han, F., Liu, S., Liu, X., et al. (2014). Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Acta Biomaterialia, 10, 921–930. https://doi.org/10.1016/j.actbio.2013.09.026

    Article  Google Scholar 

  91. Younesi, M., Islam, A., Kishore, V., et al. (2014). Tenogenic induction of human MSCs by anisotropically aligned collagen biotextiles. Advanced Functional Materials. https://doi.org/10.1002/adfm.201400828

    Article  Google Scholar 

  92. Tang, L., Yang, Y., Li, Y., et al. (2018). Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits. Acta of Bioengineering and Biomechanics, 20, 77–87. https://doi.org/10.5277/ABB-01128-2018-01

    Article  Google Scholar 

  93. Aghaei-Ghareh-Bolagh, B., Mithieux, S. M., Hiob, M. A., et al. (2019). Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications. Acta Biomaterialia, 91, 112–122. https://doi.org/10.1016/j.actbio.2019.04.029

    Article  Google Scholar 

  94. Moutos, F. T., & Guilak, F. (2010). Functional properties of cell-seeded three-dimensionally woven poly(ε-Caprolactone) scaffolds for cartilage tissue engineering. Tissue Engineering Part A, 16, 1291–1301. https://doi.org/10.1089/ten.tea.2009.0480

    Article  Google Scholar 

  95. Liao, I. C., Moutos, F. T., Estes, B. T., et al. (2013). Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Advanced Functional Materials, 23, 5833–5839. https://doi.org/10.1002/adfm.201300483

    Article  Google Scholar 

  96. Van Lieshout, M., Peters, G., Rutten, M., & Baaijens, F. (2006). A knitted, fibrin-covered polycaprolactone scaffold for tissue engineering of the aortic valve. Tissue Engineering, 12, 481–487. https://doi.org/10.1089/ten.2006.12.481

    Article  Google Scholar 

  97. Wu, Y., Wang, L., Guo, B., & Ma, P. X. (2017). Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano, 11, 5646–5659. https://doi.org/10.1021/acsnano.7b01062

    Article  Google Scholar 

  98. Moutos, F. T., Freed, L. E., & Guilak, F. (2007). A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials, 6, 162–167. https://doi.org/10.1038/nmat1822

    Article  Google Scholar 

  99. Madhavarapu, S., Rao, R., Libring, S., et al. (2017). Design and characterization of three-dimensional twist-braid scaffolds for anterior cruciate ligament regeneration. Technology, 05, 98–106. https://doi.org/10.1142/s2339547817500066

    Article  Google Scholar 

  100. Reverchon, E., Baldino, L., Cardea, S., & De Marco, I. (2012). Biodegradable synthetic scaffolds for tendon regeneration. Muscles Ligaments Tendons J, 2, 181–186.

    Google Scholar 

  101. Rothrauff, B. B., Lauro, B. B., Yang, G., et al. (2017). Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Engineering Part A, 23, 378–389. https://doi.org/10.1089/ten.tea.2016.0319

    Article  Google Scholar 

  102. Zhang, W., Yang, Y., Zhang, K., et al. (2015). Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair. Connective Tissue Research, 56, 25–34. https://doi.org/10.3109/03008207.2014.976309

    Article  MathSciNet  Google Scholar 

  103. McKenna, E., Klein, T. J., Doran, M. R., & Futrega, K. (2020). Integration of an ultra-strong poly(lactic-co-glycolic acid) (PLGA) knitted mesh into a thermally induced phase separation (TIPS) PLGA porous structure to yield a thin biphasic scaffold suitable for dermal tissue engineering. Biofabrication. https://doi.org/10.1088/1758-5090/ab4053

    Article  Google Scholar 

  104. Shao, W., He, J., Han, Q., et al. (2016). A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Materials Science and Engineering C, 67, 599–610. https://doi.org/10.1016/j.msec.2016.05.081

    Article  Google Scholar 

  105. Wu, S., Wang, Y., Streubel, P. N., & Duan, B. (2017). Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomaterialia, 62, 102–115. https://doi.org/10.1016/j.actbio.2017.08.043

    Article  Google Scholar 

  106. Wu, S., Duan, B., Liu, P., et al. (2016). Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds. ACS Applied Materials & Interfaces, 8, 16950–16960. https://doi.org/10.1021/acsami.6b05199

    Article  Google Scholar 

  107. Maziz, A., Concas, A., Khaldi, A., et al. (2017). Knitting and weaving artificial muscles. Science Advances, 3, 1–12. https://doi.org/10.1126/sciadv.1600327

    Article  Google Scholar 

  108. Mueller, K. M. A., Mulderrig, S., Najafian, S., et al. (2022). Mesh manipulation for local structural property tailoring of medical warp-knitted textiles. Journal of the Mechanical Behavior of Biomedical Materials, 128, 105117. https://doi.org/10.1016/j.jmbbm.2022.105117

    Article  Google Scholar 

  109. Zhalmuratova, D., La, T. G., Yu, K. T. T., et al. (2019). Mimicking “j-Shaped” and anisotropic stress-strain behavior of human and porcine aorta by fabric-reinforced elastomer composites. ACS Applied Materials & Interfaces, 11, 33323–33335. https://doi.org/10.1021/acsami.9b10524

    Article  Google Scholar 

  110. Bar, A. J., Mead, J., Dodiuk, H., & Kenig, S. (2022). Stretchable conductive tubular composites based on braided carbon nanotube yarns with an elastomer matrix. ACS Omega, 7, 40766–40774. https://doi.org/10.1021/acsomega.2c01991

    Article  Google Scholar 

  111. Darabi, S., Hummel, M., Rantasalo, S., et al. (2020). Green conducting cellulose yarns for machine-sewn electronic textiles. ACS Applied Materials & Interfaces, 12, 56403–56412. https://doi.org/10.1021/acsami.0c15399

    Article  Google Scholar 

  112. Cho, S., Chang, T., Yu, T., & Lee, C. H. (2022). Smart electronic textiles for wearable sensing and display. Biosensors. https://doi.org/10.3390/bios12040222

    Article  Google Scholar 

  113. Meng, Y., Zhao, Y., Hu, C., et al. (2013). All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Advanced Materials, 25, 2326–2331. https://doi.org/10.1002/adma.201300132

    Article  Google Scholar 

  114. Zhu, C., Wu, J., Yan, J., & Liu, X. (2022). Advanced fiber materials for wearable electronics. Adv Fiber Mater, 5, 12–35. https://doi.org/10.1007/s42765-022-00212-0

    Article  Google Scholar 

  115. Lim, H. R., Kim, H. S., Qazi, R., et al. (2020). Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials, 32, 1–43. https://doi.org/10.1002/adma.201901924

    Article  Google Scholar 

  116. Li, Y., Peng, H., Peng, Y., et al. (2022). Thermoplastic and electrically conductive fibers for highly stretchable and sensitive strain sensors. ACS Appl Polym Mater, 4, 8795–8802. https://doi.org/10.1021/acsapm.2c01199

    Article  Google Scholar 

  117. Zheng, L., Zhu, M., Wu, B., et al. (2021). Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Science Advances, 7, 1–11. https://doi.org/10.1126/sciadv.abg4041

    Article  Google Scholar 

  118. Trung, T. Q., Dang, T. M. L., Ramasundaram, S., et al. (2019). A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Applied Materials & Interfaces, 11, 2317–2327. https://doi.org/10.1021/acsami.8b19425

    Article  Google Scholar 

  119. Cui, X., Jiang, Y., Xu, Z., et al. (2021). Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Composites Part B: Engineering, 211, 108641. https://doi.org/10.1016/j.compositesb.2021.108641

    Article  Google Scholar 

  120. Shyu, T. C., Damasceno, P. F., Dodd, P. M., et al. (2015). A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 14, 785–789. https://doi.org/10.1038/nmat4327

    Article  Google Scholar 

  121. Bahamon, D. A., Qi, Z., Park, H. S., et al. (2016). Graphene kirigami as a platform for stretchable and tunable quantum dot arrays. Physical Review B. https://doi.org/10.1103/PhysRevB.93.235408

    Article  Google Scholar 

  122. Lamoureux, A., Lee, K., Shlian, M., et al. (2015). Dynamic kirigami structures for integrated solar tracking. Nature Communications, 6, 1–6. https://doi.org/10.1038/ncomms9092

    Article  Google Scholar 

  123. Ning, X., Wang, X., Zhang, Y., et al. (2018). Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: A review. Advanced Materials Interfaces, 5, 1–13. https://doi.org/10.1002/admi.201800284

    Article  Google Scholar 

  124. Isobe, M., & Okumura, K. (2016). Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Science and Reports, 6, 1–6. https://doi.org/10.1038/srep24758

    Article  Google Scholar 

  125. Hong, Y., Chi, Y., Wu, S., et al. (2022). Boundary curvature guided programmable shape-morphing kirigami sheets. Nature Communications, 13, 1–13. https://doi.org/10.1038/s41467-022-28187-x

    Article  Google Scholar 

  126. Han, D. X., Zhao, L., Chen, S. H., et al. (2021). Critical transitions in the shape morphing of kirigami metallic glass. Journal of Materials Science and Technology, 61, 204–212. https://doi.org/10.1016/j.jmst.2020.05.065

    Article  Google Scholar 

  127. Dudte, L. H., Vouga, E., Tachi, T., & Mahadevan, L. (2016). Programming curvature using origami tessellations. Nature Materials, 15, 583–588. https://doi.org/10.1038/nmat4540

    Article  Google Scholar 

  128. Tang, R., Huang, H., Tu, H., et al. (2014). Origami-enabled deformable silicon solar cells. Applied Physics Letters, 10(1063/1), 4866145.

    Google Scholar 

  129. Silverberg, J. L., Na, J. H., Evans, A. A., et al. (2015). Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nature Materials, 14, 389–393. https://doi.org/10.1038/nmat4232

    Article  Google Scholar 

  130. Filipov, E. T., Tachi, T., Paulino, G. H., & Weitz, D. A. (2015). Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112, 12321–12326. https://doi.org/10.1073/pnas.1509465112

    Article  Google Scholar 

  131. Saito, K., Tsukahara, A., & Okabe, Y. (2014). Designing of self-deploying origami models using geometrically misaligned crease patterns. Proc ASME Des Eng Tech Conf. https://doi.org/10.1115/DETC201435592

    Article  MATH  Google Scholar 

  132. Chen, Y., Li, T., Scarpa, F., & Wang, L. (2017). Lattice metamaterials with mechanically tunable poisson’s ratio for vibration control. Physical Review Applied. https://doi.org/10.1103/PhysRevApplied.7.024012

    Article  Google Scholar 

  133. Rodríguez-Hernández, J. (2015). Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Progress in Polymer Science, 42, 1–41. https://doi.org/10.1016/j.progpolymsci.2014.07.008

    Article  Google Scholar 

  134. Pocivavsek, L., Pugar, J., O’Dea, R., et al. (2018). Topography-driven surface renewal. Nature Physics, 14, 948–953. https://doi.org/10.1038/s41567-018-0193-x

    Article  Google Scholar 

  135. Liu, N., Sun, Q., Yang, Z., et al. (2023). Wrinkled interfaces: taking advantage of anisotropic wrinkling to periodically pattern polymer surfaces. Advancement of Science, 2207210, 1–27. https://doi.org/10.1002/advs.202207210

    Article  Google Scholar 

  136. Sarabia-Vallejos, M. A., Cerda-Iglesias, F. E., Pérez-Monje, D. A., et al. (2023). Smart polymer surfaces with complex wrinkled patterns: Reversible, non-planar, gradient, and hierarchical structures. Polymers (Basel), 15, 1–61. https://doi.org/10.3390/polym15030612

    Article  Google Scholar 

  137. Lee, J. S., Hong, H., Park, S. J., et al. (2017). A simple fabrication process for stepwise gradient wrinkle pattern with spatially-controlled wavelength based on sequential oxygen plasma treatment. Microelectronic Engineering, 176, 101–105. https://doi.org/10.1016/j.mee.2017.02.022

    Article  Google Scholar 

  138. Wang, F., Xiao, S., Luo, S., et al. (2022). Surface wrinkling with memory for programming adhesion and wettability. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.2c05410

    Article  Google Scholar 

  139. Lee, G., Zarei, M., Wei, Q., et al. (2022). Surface wrinkling for flexible and stretchable sensors. Small (Weinheim an der Bergstrasse, Germany), 18, 1–39. https://doi.org/10.1002/smll.202203491

    Article  Google Scholar 

  140. Ma, Y., Jang, K. I., Wang, L., et al. (2016). Design of strain-limiting substrate materials for stretchable and flexible electronics. Advanced Functional Materials, 26, 5345–5351. https://doi.org/10.1002/adfm.201600713

    Article  Google Scholar 

  141. Kaltenbrunner, M., Sekitani, T., Reeder, J., et al. (2013). An ultra-lightweight design for imperceptible plastic electronics. Nature, 499, 458–463. https://doi.org/10.1038/nature12314

    Article  Google Scholar 

  142. Kim, D. H., Ahn, J. H., Choi, W. M., Kim, H. S., Kim, T. H., Song, J., Rogers, J. A. (2008). Stretchable and foldable silicon integrated circuits. Science, 320(5875), 507–511.

  143. Starostin, E. L., & van der Heijden, G. H. M. (2009). Cascade unlooping of a low-pitch helical spring under tension. Journal of the Mechanics and Physics of Solids, 57, 959–969. https://doi.org/10.1016/j.jmps.2009.02.004

    Article  Google Scholar 

  144. Pham, J. T., Lawrence, J., Lee, D. Y., et al. (2013). Highly stretchable nanoparticle helices through geometric asymmetry and surface forces. Advanced Materials, 25, 6703–6708. https://doi.org/10.1002/adma.201302817

    Article  Google Scholar 

  145. Farahani, R. D., Chizari, K., & Therriault, D. (2014). Three-dimensional printing of freeform helical microstructures: A review. Nanoscale, 6, 10470–10485. https://doi.org/10.1039/c4nr02041c

    Article  Google Scholar 

  146. Pattinson, S. W., Huber, M. E., Kim, S., et al. (2019). Additive manufacturing of biomechanically tailored meshes for compliant wearable and implantable devices. Advanced Functional Materials. https://doi.org/10.1002/adfm.201901815

    Article  Google Scholar 

  147. Kim, B., Lee, S. B., Lee, J., et al. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13, 759–764. https://doi.org/10.1007/s12541-012-0099-y

    Article  Google Scholar 

  148. Pham, J. T., Lawrence, J., Grason, G. M., et al. (2014). Stretching of assembled nanoparticle helical springs. Physical Chemistry Chemical Physics, 16, 10261–10266. https://doi.org/10.1039/c3cp55502j

    Article  Google Scholar 

  149. Yang, Z., Zhai, Z., Song, Z., et al. (2020). Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Advanced Materials, 32, 1–7. https://doi.org/10.1002/adma.201907495

    Article  Google Scholar 

  150. Park, J. Y., Lee, W. J., Kwon, B. S., et al. (2018). Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectronic Engineering, 199, 16–23. https://doi.org/10.1016/j.mee.2018.07.006

    Article  Google Scholar 

  151. Luo, G., Xie, J., Liu, J., et al. (2023). Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chemical Engineering Journal, 451, 138549. https://doi.org/10.1016/j.cej.2022.138549

    Article  Google Scholar 

  152. Miao, J., & Fan, T. (2023). Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon N Y, 202, 495–527. https://doi.org/10.1016/j.carbon.2022.11.018

    Article  Google Scholar 

  153. Wang, L., Yi, Z., Zhao, Y., et al. (2022). Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 52, 795–835. https://doi.org/10.1039/d2cs00837h

    Article  Google Scholar 

  154. Yu, Y., Zeng, J., Chen, C., et al. (2014). Three-dimensional compressible and stretchable conductive composites. Advanced Materials, 26, 810–815. https://doi.org/10.1002/adma.201303662

    Article  Google Scholar 

  155. Guo, C. F., Sun, T., Liu, Q., et al. (2014). Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nature Communications, 5, 1–8. https://doi.org/10.1038/ncomms4121

    Article  Google Scholar 

  156. Liu ZF, Fang S, Moura FA, et al (2015) Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science (80- ) 349:400–404. https://doi.org/10.1126/science.aaa7952

  157. Someya, T., Kato, Y., Sekitani, T., et al. (2005). Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A, 102, 12321–12325. https://doi.org/10.1073/pnas.0502392102

    Article  Google Scholar 

  158. Kim, D. H., Song, J., Won, M. C., et al. (2008). Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci U S A, 105, 18675–18680. https://doi.org/10.1073/pnas.0807476105

    Article  Google Scholar 

  159. Kim, R. H., Kim, D. H., Xiao, J., et al. (2010). Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Materials, 9, 929–937. https://doi.org/10.1038/nmat2879

    Article  Google Scholar 

  160. Miyamoto, A., Lee, S., Cooray, N. F., et al. (2017). Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 12, 907–913. https://doi.org/10.1038/nnano.2017.125

    Article  Google Scholar 

  161. Blees, M. K., Barnard, A. W., Rose, P. A., et al. (2015). Graphene kirigami. Nature, 524, 204–207. https://doi.org/10.1038/nature14588

    Article  Google Scholar 

  162. Chen, Z., Ren, W., Gao, L., et al. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10, 424–428. https://doi.org/10.1038/nmat3001

    Article  Google Scholar 

  163. Lanzara, G., Salowitz, N., Guo, Z., & Chang, F. K. (2010). A spider-web-like highly expandable sensor network for multifunctional materials. Advanced Materials, 22, 4643–4648. https://doi.org/10.1002/adma.201000661

    Article  Google Scholar 

  164. Woo, J., Lee, H., Yi, C., et al. (2020). Ultrastretchable helical conductive fibers using percolated ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Advanced Functional Materials, 30, 1–11. https://doi.org/10.1002/adfm.201910026

    Article  Google Scholar 

  165. Wang, L., Liu, W., Yan, Z., et al. (2021). Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Advanced Functional Materials, 31, 1–10. https://doi.org/10.1002/adfm.202007221

    Article  Google Scholar 

  166. Bhuyan, P., Wei, Y., Choe, M., et al. (2023). Liquid-metal-microdroplets-incorporated ultrasoft dielectric gel toward stretchable and healable waste-energy-harvesting devices. Nano Energy, 108, 108214. https://doi.org/10.1016/j.nanoen.2023.108214

    Article  Google Scholar 

  167. Parvin, N., Kumar, V., Manikkavel, A., et al. (2023). Great new generation carbon microsphere-based composites: Facile synthesis, properties and their application in piezo-electric energy harvesting. Applied Surface Science, 613, 156078. https://doi.org/10.1016/j.apsusc.2022.156078

    Article  Google Scholar 

  168. Lan L, Jiang C, Yao Y, et al (2021) A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 84:105954. https://doi.org/10.1016/j.nanoen.2021.105954

  169. He, X., Gu, J., Hao, Y., et al. (2022). Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal, 450, 137937. https://doi.org/10.1016/j.cej.2022.137937

    Article  Google Scholar 

  170. Chung, K. Y., Xu, B., Li, Z., et al. (2023). Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing. Chemical Engineering Journal, 454, 140384. https://doi.org/10.1016/j.cej.2022.140384

    Article  Google Scholar 

  171. Ahn, S., Cho, Y., Park, S., et al. (2020). Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy, 74, 104932. https://doi.org/10.1016/j.nanoen.2020.104932

    Article  Google Scholar 

  172. Dong, K., Deng, J., Ding, W., et al. (2018). Versatile core-sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Advanced Energy Materials, 8, 1–12. https://doi.org/10.1002/aenm.201801114

    Article  Google Scholar 

  173. Yang, Y., Hu, H., Chen, Z., et al. (2020). Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Letters, 20, 4445–4453. https://doi.org/10.1021/acs.nanolett.0c01225

    Article  Google Scholar 

  174. Li, Q., Wu, T., Zhao, W., et al. (2022). 3D printing stretchable core-shell laser scribed graphene conductive network for self-powered wearable devices. Composites. Part B, Engineering, 240, 110000. https://doi.org/10.1016/j.compositesb.2022.110000

    Article  Google Scholar 

  175. Bas, O., De-Juan-Pardo, E. M., Meinert, C., et al. (2017). Biofabricated soft network composites for cartilage tissue engineering. Biofabrication. https://doi.org/10.1088/1758-5090/aa6b15

    Article  Google Scholar 

  176. Bas, O., D’Angella, D., Baldwin, J. G., et al. (2017). An integrated design, material, and fabrication platform for engineering biomechanically and biologically functional soft tissues. ACS Applied Materials & Interfaces, 9, 29430–29437. https://doi.org/10.1021/acsami.7b08617

    Article  Google Scholar 

  177. Saidy, N. T., Wolf, F., Bas, O., et al. (2019). Biologically inspired scaffolds for heart valve tissue engineering via melt electrowriting. Small (Weinheim an der Bergstrasse, Germany). https://doi.org/10.1002/smll.201900873

    Article  Google Scholar 

  178. Ling, Y., Pang, W., Liu, J., et al. (2022). Bioinspired elastomer composites with programmed mechanical and electrical anisotropies. Nature Communications, 13, 1–11. https://doi.org/10.1038/s41467-022-28185-z

    Article  Google Scholar 

  179. Li, J., Liu, Y., Yuan, L., et al. (2022). A tissue-like neurotransmitter sensor for the brain and gut. Nature, 606, 94–101. https://doi.org/10.1038/s41586-022-04615-2

    Article  Google Scholar 

  180. Mammerickx J, Fox PJ, Alexander RT, et al (2015) Research reports. 350

  181. Wong, S. H. D., Deen, G. R., Bates, J. S., et al. (2023). Smart skin-adhesive patches: From design to biomedical applications. Advanced Functional Materials, 2213560, 1–29. https://doi.org/10.1002/adfm.202213560

    Article  Google Scholar 

  182. Wang, J., Lin, M. F., Park, S., & Lee, P. S. (2018). Deformable conductors for human–machine interface. Materials Today, 21, 508–526. https://doi.org/10.1016/j.mattod.2017.12.006

    Article  Google Scholar 

  183. Sharma S, Pradhan GB, Jeong S, Park JY (2023) A stretchable strain-insensitive smart glove for simultaneous detection of pressure and temperature. Proc IEEE Int Conf Micro Electro Mech Syst 2023-Janua:225–228. https://doi.org/10.1109/MEMS49605.2023.10052496

  184. Fu, Y. F., Yi, F. L., Liu, J. R., et al. (2020). Super soft but strong E-Skin based on carbon fiber/carbon black/silicone composite: Truly mimicking tactile sensing and mechanical behavior of human skin. Composites Science and Technology, 186, 107910. https://doi.org/10.1016/j.compscitech.2019.107910

    Article  Google Scholar 

  185. De Fazio, R., Mastronardi, V. M., De Vittorio, M., & Visconti, P. (2023). Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: An overview. Sensors. https://doi.org/10.3390/s23041856

    Article  Google Scholar 

  186. Li, R. T., Kling, S. R., Salata, M. J., et al. (2016). Wearable performance devices in sports medicine. Sports Health, 8, 74–78. https://doi.org/10.1177/1941738115616917

    Article  Google Scholar 

  187. Gustafsson, U. O., Scott, M. J., Hubner, M., et al. (2019). Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS®) society recommendations: 2018. World Journal of Surgery, 43, 659–695. https://doi.org/10.1007/s00268-018-4844-y

    Article  Google Scholar 

  188. Jin, X., Xu, Z., Wang, B., et al. (2023). A highly sensitive and wide-range pressure sensor based on orientated and strengthened TPU nanofiber membranes fabricated by a conjugated electrospinning technology. Chemical Engineering Journal Advances, 14, 100491. https://doi.org/10.1016/j.ceja.2023.100491

    Article  Google Scholar 

  189. Zahid, M., Zych, A., Dussoni, S., et al. (2021). Wearable and self-healable textile-based strain sensors to monitor human muscular activities. Composites Part B: Engineering, 220, 108969. https://doi.org/10.1016/j.compositesb.2021.108969

    Article  Google Scholar 

  190. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26, 1678–1698. https://doi.org/10.1002/adfm.201504755

    Article  Google Scholar 

  191. Lee, Y., Park, J., Choe, A., et al. (2020). Mimicking human and biological skins for multifunctional skin electronics. Advanced Functional Materials, 30, 1–32. https://doi.org/10.1002/adfm.201904523

    Article  Google Scholar 

  192. Handler, A., & Ginty, D. D. (2022). The Mechanosensory Neurons of Touch and their Mechanisms of Activation., 22, 521–537. https://doi.org/10.1038/s41583-021-00489-x.The

    Article  Google Scholar 

  193. Cao, H. L., & Cai, S. Q. (2022). Recent advances in electronic skins: Material progress and applications. Front Bioeng Biotechnol, 10, 1–8. https://doi.org/10.3389/fbioe.2022.1083579

    Article  Google Scholar 

  194. Wu, X., Pei, B., Pei, Y., et al. (2019). Comprehensive biomechanism of impact resistance in the cat’s paw pad. BioMed Research International. https://doi.org/10.1155/2019/2183712

    Article  Google Scholar 

  195. Hou, C., Huang, T., Wang, H., et al. (2013). A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Science and Reports, 3, 21–25. https://doi.org/10.1038/srep03138

    Article  Google Scholar 

  196. Wu, F., Liu, Y., Zhang, J., Duan, S., Ji, D., & Yang, H. (2021). Recent advances in high- mobility and high-stretchability organic field-effect transistors: From materials, devices to applications. Small Methods, 5(12), 2100676.

    Article  Google Scholar 

  197. Liu, Y., He, K., Chen, G., et al. (2017). Nature-inspired structural materials for flexible electronic devices. Chemical reviews, 117(20), 12893–12941. https://doi.org/10.1021/acs.chemrev.7b00291

    Article  Google Scholar 

  198. Liu, Y., Shang, S., Mo, S., Wang, P., & Wang, H. (2021). Eco-friendly strategies for the material and fabrication of wearable sensors. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 1323–1346.

    Article  Google Scholar 

  199. Guo, W., Yang, K., Qin, X., Luo, R., Wang, H., & Huang, R. (2022). Polyhydroxyalkanoates in tissue repair and regeneration. Engineered Regeneration, 3(1), 24–40.

    Article  Google Scholar 

  200. Yao, Y., Pohan, G., Cutiongco, M. F., Jeong, Y., Kunihiro, J., Zaw, A. M., & Yim, E. K. (2023). In vivo evaluation of compliance mismatch on intimal hyperplasia formation in small diameter vascular grafts. Biomaterials Science, 11(9), 3297–3307.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT;No. RS-2023-00208702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sung Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, A., Yoo, D., Kim, D. et al. Recent Progress in Strain-Engineered Stretchable Constructs. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2023). https://doi.org/10.1007/s40684-023-00565-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00565-w

Keywords

Navigation