Skip to main content
Log in

The Ultrafast and Eco-friendly Reduction of Graphene Oxide Using a UV–IR Assisted Intense Pulsed Light and Its Application as Supercapacitor

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this work, a UV–IR assisted intense pulsed light (IPL) process was used for the reduction of graphene oxide (GO). It was found that the reduction efficiency of GO was enhanced compared to those of other reduction methods such as only intense pulsed light irradiation or other chemical method. An optimal condition for the reduction of GO was investigated by varying conditions and combinations of the UV–IR assisted IPL. The graphene films reduced by the UV–IR assisted IPL were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. As a result, we found the optimum condition of the UV–IR assisted IPL process for the reduction of GO without any damage to the GO sheet. Also, the reduced GO based electrode was fabricated with nickel foam for the electrical double layer capacitor and its performance was tested using three electrode electrochemical method.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pei, S., & Cheng, H.-M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210–3228.

    Article  Google Scholar 

  2. Kuila, T., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2013). Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 5(1), 52–71.

    Article  Google Scholar 

  3. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced materials, 22(35), 3906–3924.

    Article  Google Scholar 

  4. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., et al. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814.

    Article  Google Scholar 

  5. Compton, O. C., & Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small (Weinheim an der Bergstrasse, Germany), 6(6), 711–723.

    Article  Google Scholar 

  6. Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 28(37), 13467–13472.

    Article  Google Scholar 

  7. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Article  Google Scholar 

  8. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., et al. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191–1196.

    Article  Google Scholar 

  9. Larciprete, R., Fabris, S., Sun, T., Lacovig, P., Baraldi, A., & Lizzit, S. (2011). Dual path mechanism in the thermal reduction of graphene oxide. Journal of the American Chemical Society, 133(43), 17315–17321.

    Article  Google Scholar 

  10. Akhavan, O. (2010). The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon, 48(2), 509–519.

    Article  MathSciNet  Google Scholar 

  11. Pham, V. H., Pham, H. D., Dang, T. T., Hur, S. H., Kim, E. J., Kong, B. S., et al. (2012). Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. Journal of Materials Chemistry, 22(21), 10530–10536.

    Article  Google Scholar 

  12. Zhang, Y. L., Guo, L., Xia, H., Chen, Q. D., Feng, J., & Sun, H. B. (2014). Photoreduction of graphene oxides: Methods, properties, and applications. Advanced Optical Materials, 2(1), 10–28.

    Article  Google Scholar 

  13. Mukherjee, R., Thomas, A. V., Krishnamurthy, A., & Koratkar, N. (2012). Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano, 6(9), 7867–7878.

    Article  Google Scholar 

  14. Gilje, S., Dubin, S., Badakhshan, A., Farrar, J., Danczyk, S. A., & Kaner, R. B. (2010). Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 22(3), 419–423.

    Article  Google Scholar 

  15. Park, S.-H., & Kim, H.-S. (2015). Environmentally benign and facile reduction of graphene oxide by flash light irradiation. Nanotechnology, 26(20), 205601.

    Article  Google Scholar 

  16. Jang, Y.-R., Joo, S.-J., Chu, J.-H., Uhm, H.-J., Park, J.-W., Ryu, C.-H., et al. (2021). A review on intense pulsed light sintering technologies for conductive electrodes in printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 327–363.

  17. Jang, Y.-R., Ryu, C.-H., Hwang, Y.-T., & Kim, H.-S. (2020). Optimization of intense pulsed light sintering considering dimensions of printed Cu nano/micro-paste patterns for printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–15.

  18. Chung, W. H., Park, S. H., Joo, S. J., & Kim, H. S. (2018). UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Research, 11(4), 2190–2203.

    Article  Google Scholar 

  19. Ji, T., Hua, Y., Sun, M., & Ma, N. (2013). The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon, 54, 412–418.

    Article  Google Scholar 

  20. Hwang, H. J., Lim, S. C., Ok, K. C., Park, J. S., & Kim, H. S. (2016). Photonic sintering via flash white light combined with deep UV and NIR for SrTiO3 thin film vibration touch panel applications. Nanotechnology, 27(50), 505209.

    Article  Google Scholar 

  21. Lin, Y.-J., & Zeng, J.-J. (2013). Tuning the work function of graphene by ultraviolet irradiation. Applied Physics Letters, 102(18), 183120.

    Article  Google Scholar 

  22. Xiang, F., Zhong, J., Gu, N., Mukherjee, R., Oh, I.-K., Koratkar, N., et al. (2014). Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors. Carbon, 75, 201–208.

    Article  Google Scholar 

  23. Guo, H., Peng, M., Zhu, Z., & Sun, L. (2013). Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale, 5(19), 9040–9048.

    Article  Google Scholar 

  24. Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., & Chabal, Y. (2010). Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature materials, 9(10), 840–845.

    Article  Google Scholar 

  25. Fan, Z., Wang, K., Wei, T., Yan, J., Song, L., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48(5), 1686–1689.

    Article  Google Scholar 

  26. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., et al. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565.

    Article  Google Scholar 

  27. Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., et al. (2007). Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Letters, 7(2), 238–242.

    Article  Google Scholar 

  28. Röhrl, J., Hundhausen, M., Emtsev, K., Seyller, T., Graupner, R., & Ley, L. (2008). Raman spectra of epitaxial graphene on SiC (0001). Applied Physics Letters, 92(20), 201918.

    Article  Google Scholar 

  29. Hanfland, M., Beister, H., & Syassen, K. (1989). Graphite under pressure: Equation of state and first-order Raman modes. Physical Review B, 39(17), 12598.

    Article  Google Scholar 

  30. Malard, L., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87.

    Article  Google Scholar 

  31. Park, S.-H., Jung, H.-M., Um, S., Song, Y.-W., & Kim, H.-S. (2012). Rapid synthesis of Pt-based alloy/carbon nanotube catalysts for a direct methanol fuel cell using flash light irradiation. International Journal of Hydrogen Energy, 37(17), 12597–12604.

    Article  Google Scholar 

  32. Park, S.-H., Joo, S.-J., & Kim, H.-S. (2014). An investigation into methanol oxidation reactions and CO, OH adsorption on Pt–Ru–Mo catalysts for a direct methanol fuel cell. Journal of the Electrochemical Society, 161(4), F405.

    Article  Google Scholar 

  33. Park, S.-H., & Kim, H.-S. (2014). Flash light-assisted facile and eco-friendly synthesis of platinum-based alloy nanoparticle/carbon nano-tube catalysts for a direct methanol fuel cell. Journal of The Electrochemical Society, 162(1), F204.

    Article  Google Scholar 

  34. Pérez del Pino, Á., György, E., Cabana, L., Ballesteros, B., & Tobias, G. (2014). Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere. Journal of Applied Physics, 115(9), 093501.

    Article  Google Scholar 

  35. Antunes, E., Lobo, A., Corat, E., Trava-Airoldi, V., Martin, A., & Veríssimo, C. (2006). Comparative study of first-and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon, 44(11), 2202–2211.

    Article  Google Scholar 

  36. Raja, M. (2015). Surface modification of carbon nanotubes with combined UV and ozone treatments. Fullerenes, Nanotubes and Carbon Nanostructures, 23(1), 11–16.

    Article  Google Scholar 

  37. Wang, W., Ruiz, I., Lee, I., Zaera, F., Ozkan, M., & Ozkan, C. S. (2015). Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment. Nanoscale, 7(16), 7045–7050.

    Article  Google Scholar 

  38. Cote, L. J., Cruz-Silva, R., & Huang, J. (2009). Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 131(31), 11027–11032.

    Article  Google Scholar 

  39. Singh, R. N., & Awasthi, R. (2011). Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation. Catalysis Science & Technology, 1(5), 778–783.

    Article  Google Scholar 

  40. Ye, S., Feng, J., & Wu, P. (2013). Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Applied Materials & Interfaces, 5(15), 7122–7129.

    Article  Google Scholar 

  41. Tang, L. A., Lee, W. C., Shi, H., Wong, E. Y., Sadovoy, A., Gorelik, S., et al. (2012). Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small (Weinheim an der Bergstrasse, Germany), 8(3), 423–431.

    Article  Google Scholar 

  42. Li, H., Yu, M., Wang, F., Liu, P., Liang, Y., Xiao, J., et al. (2013). Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 4(1), 1–7.

    Google Scholar 

  43. Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., et al. (2010). A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Advanced Materials, 22(33), 3723–3728.

    Article  Google Scholar 

  44. Chen, W., Fan, Z., Gu, L., Bao, X., & Wang, C. (2010). Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 46(22), 3905–3907.

    Article  Google Scholar 

  45. Chen, G. Z. (2013). Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science: Materials International, 23(3), 245–255.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (2012R1A6A1029029 and 2018R1D1A1A09083236). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20206910100160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Sung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, YT., Kim, HS. The Ultrafast and Eco-friendly Reduction of Graphene Oxide Using a UV–IR Assisted Intense Pulsed Light and Its Application as Supercapacitor. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 201–211 (2022). https://doi.org/10.1007/s40684-021-00315-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00315-w

Keywords

Navigation