Skip to main content
Log in

Scalable fabrication of flexible transparent heaters comprising continuously created metallic micromesh patterns incorporated with biomimetic anti-reflection layers

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

We present the scalable fabrication of a novel transparent heater (TH) architecture by continuously creating metallic micromesh patterns on a flexible substrate via Photo Roll Lithography (PRL). The optimal TH structure is explored by systematically investigating the heating and transmittance characteristics depending on the metal material, thickness, and micromesh dimension. The transmittance is further enhanced by incorporating the biomimetic moth-eye anti-reflection layer (ARC) which effectively reduces the reflection along with diffraction and scattering of incident light. The fabricated ARC-integrated TH exhibits an excellent transmittance with satisfactory heating up to 47.5oC at the applied current of 0.6 A, which demonstrates ten times more power-efficient than conventional macroscale wire defrosters used in most vehicles. Successful defrosting of both planar and curved large-area surfaces is visually demonstrated by attaching the 70 × 70 mm-sized THs fabricated on a glass or flexible polymer. This versatile, highthroughput TH architecturing may be applicable to many other devices requiring flexibility, scalability, and power-efficient operation, and their commercially-feasible production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, P., Wong, T.-S., Alvarenga, J., Kreder, M. J., Adorno-Martinez, W. E., et al., “Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance,” ACS Nano, Vol. 6, No. 8, pp. 6569–6577, 2012.

    Article  Google Scholar 

  2. Sui, D., Huang, Y., Huang, L., Liang, J., Ma, Y., et al., “Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials,” Small, Vol. 7, No. 22, pp. 3186–3192, 2011.

    Article  Google Scholar 

  3. Xia, Y., Zhong, Y., Hrnjak, P., and Jacobi, A., “Frost, Defrost, and Refrost and Its Impact on the Air-Side Thermal-Hydraulic Performance of Louvered-Fin, Flat-Tube Heat Exchangers,” International Journal of Refrigeration, Vol. 29, No. 7, pp. 1066–1079, 2006.

    Article  Google Scholar 

  4. Yamaguchi, K., Obata, M., and Ogawa, M., “Heat Pump Including Auxiliary Outdoor Heat Exchanger Acting as Defroster and Sub-Cooler,” US Patent, 4171622 A, 1979.

    Google Scholar 

  5. Han, S. Y., Hong, S. J., Yeo, J. Y., Kim, D. K., Kang, B. C., et al., “Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction,” Advanced Materials, Vol. 27, No. 41, pp. 6397–6403, 2015.

    Article  Google Scholar 

  6. Hong, S. J., Lee, H. B., Lee, J. H., Kwon, J. H., Han, S. Y., et al., “Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications,” Advanced Materials, Vol. 27, No. 32, pp. 4744–4751, 2015.

    Article  Google Scholar 

  7. Kang, M.-G., Kim, M.-S., Kim, J., and Guo, L. J., “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Advanced Materials, Vol. 20, No. 23, pp. 4408–4413, 2008.

    Article  Google Scholar 

  8. Kwak, M. K., Ok, J. G., Lee, J. Y., and Guo, L. J. “Continuous Phase-Shift Lithography with a Roll-Type Mask and Application to Transparent Conductor Fabrication,” Nanotechnology, Vol. 23, No. 34, Paper No. 344008, 2012.

  9. Lee, J.-Y., Connor, S. T., Cui, Y., and Peumans, P., “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Letters, Vol. 8, No. 2, pp. 689–692, 2008.

    Article  Google Scholar 

  10. Ok, J. G., Kwak, M. K., Huard, C. M., Youn, H. S., and Guo, L. J., “Photo-Roll Lithography (PRL) for Continuous and Scalable Patterning with Application in Flexible Electronics,” Advanced Materials, Vol. 25, No. 45, pp. 6554–6561, 2013.

    Article  Google Scholar 

  11. Lee, S. H., Lee, J. H., Park, C. W., and Kwak, M. K., “Roll-Type Photolithography for Continuous Fabrication of Narrow Bus Wires,” Journal of Micromechanics and Microengineering, Vol. 26, No. 11, Paper No. 115008, 2016.

    Article  Google Scholar 

  12. Kang, S. M., “Bioinspired Design and Fabrication of Green-Environmental Dry Adhesive with Robust Wide-Tip Shape,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 189–192, 2016.

    Article  MathSciNet  Google Scholar 

  13. Suh, Y. D., Hong, S. J., Kim, G. H., Hwang, K. I., Choi, J. H., et al., “Selective Electro-Thermal Growth of Zinc Oxide Nanowire on Photolithographically Patterned Electrode for Microsensor Applications,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 173–177, 2016.

    Article  Google Scholar 

  14. Yi, H., Hwang, I. S., Sung, M. H., Lee, D. E., Kim, J. H., et al., “Bio-Inspired Adhesive Systems for Next-Generation Green Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 347–351, 2014.

    Article  Google Scholar 

  15. Goetting, L. B., Den, T., and Whitesides, G. M., “Microcontact Printing of Alkanephosphonic Acids on Aluminum: Pattern Transfer by Wet Chemical Etching,” Langmuir, Vol. 15, No. 4, pp. 1182–1191, 1999.

    Article  Google Scholar 

  16. Vazquez-Mena, O., Villanueva, G., Van Den Boogaart, M., Savu, V., and Brugger, J., “Reusability of Nanostencils for the Patterning of Aluminum Nanostructures by Selective Wet Etching,” Microelectronic Engineering, Vol. 85 No. 5, pp. 1237–1240, 2008.

    Article  Google Scholar 

  17. Hong, S. W., Bae, J. W., Koo, B. J., Chang, I. W., Cho, G. Y., et al., “Nanostructuring Methods for Enhancing Light Absorption Rate of Si-Based Photovoltaic Devices: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 67–74, 2014.

    Article  Google Scholar 

  18. Huang, Y.-F., Chattopadhyay, S., Jen, Y.-J., Peng, C.-Y., Liu, T.-A., et al., “Improved Broadband and Quasi-Omnidirectional Anti-Reflection Properties with Biomimetic Silicon Nanostructures,” Nature Nanotechnology, Vol. 2, No. 12, pp. 770–774, 2007.

    Article  Google Scholar 

  19. Lalanne, P. and Morris, G. M., “Antireflection Behavior of Silicon Subwavelength Periodic Structures for Visible Light,” Nanotechnology, Vol. 8, No. 2, p. 53, 1997.

    Article  Google Scholar 

  20. Wilson, S. and Hutley, M., “The Optical Properties of ‘Moth Eye’antireflection Surfaces,” Journal of Modern Optics, Vol. 29, No. 7, pp. 993–1009, 1982.

    Google Scholar 

  21. Jeong, H. E., Kwak, M. K., Park, C. I., and Suh, K. Y., “Wettability of Nanoengineered Dual-Roughness Surfaces Fabricated by UVAssisted Capillary Force Lithography,” Journal of Colloid and Interface Science, Vol. 339, No. 1, pp. 202–207, 2009.

    Article  Google Scholar 

  22. Kwak, M. K., Jeong, H. E., Kim, T.-i., Yoon, H., and Suh, K. Y., “Bio-Inspired Slanted Polymer Nanohairs for Anisotropic Wetting and Directional Dry Adhesion,” Soft Matter, Vol. 6, No. 9, pp. 1849–1857, 2010.

    Article  Google Scholar 

  23. Lee, S. H., Lee, J. H., Park, C. W., Lee, C. Y., Kim, K., et al., “Continuous Fabrication of Bio-Inspired Water Collecting Surface Via Roll-Type Photolithography,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 2, pp. 119–124, 2014.

    Article  Google Scholar 

  24. Choi, S.-J., Kim, H. N., Bae, W. G., and Suh, K. Y., “Modulus-and Surface Energy-Tunable Ultraviolet-Curable Polyurethane Acrylate: Properties and Applications,” Journal of Materials Chemistry, Vol. 21, No. 38, pp. 14325–14335, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong G. Ok or Moon Kyu Kwak.

Additional information

Sung Ho Lee and Sung Woo Kim contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Kim, S.W., Park, C.W. et al. Scalable fabrication of flexible transparent heaters comprising continuously created metallic micromesh patterns incorporated with biomimetic anti-reflection layers. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 177–181 (2017). https://doi.org/10.1007/s40684-017-0022-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0022-1

Keywords

Navigation