Skip to main content

Advertisement

Log in

Molecular Mechanisms Underlying Systemic Sclerosis–Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: an Update

  • Role of Metabolism in Fibrosis: Translational Implications (K Saag, Section Editor)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Abstract

Purpose of review

Systemic sclerosis–associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF) are fatal fibrotic lung disorders characterized by progressive fibrosis, immune dysregulation, vascular damage, fibroblast activation, and myofibroblast differentiation. In this review, we will briefly update all the above-mentioned mechanisms, cell-type involvement from single cell-RNA sequencing, and the differences with emerging common biomarkers and available treatment options.

Recent findings

In the IPF, tissue injury and lung fibrosis are thought to be initiated by injury of the alveolar epithelium and activation of alveolar epithelial cells (AECs) that release cytokines to activate the fibroblasts. By contrast, vascular damage is an early event in the pathogenesis of SSc-ILD and several diverse cells, such as myofibroblasts, fibroblasts, and endothelial cells, participate in inflammatory activation. Recent findings from single-cell RNA-seq suggested the presence of different subsets of innate and adaptive immune cells and differentiation of myofibroblasts from distinct sources, which complicates the understanding of the disease landscape. Fibroblast activation and myofibroblast accumulation are the final common pathways of lung fibrosis in both SSc-associated ILD and IPF.

Summary

Fibrosis in IPF appears to be related to aberrant repair following injury, but whether this also holds for SSc-ILD is less evident. Additionally, compared to IPF, immune dysregulation appears to contribute more to profibrotic responses in SSc-ILD. Nevertheless, persistent myofibroblast activity leads to progressive tissue fibrosis leading to organ failure and death. Few FDA-approved drugs (nintedanib, tocilizumab, and pirfenidone) are available for the treatment of fibrotic lung disease. Prospective high-throughput strategy-based approaches are required to understand the complexity of the diseases and develop specific therapeutic targets as part of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Herzog EL, Mathur A, Tager AM, Feghali-Bostwick C, Schneider F, Varga J. Review: Interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: How similar and distinct? Arthritis Rheumatol. 2014;66(8):1967–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattoo H, Pillai S. Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cell Mol Life Sci. 2021;78(14):5527–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nihtyanova SI, Denton CP. Pathogenesis of systemic sclerosis associated interstitial lung disease. J Scleroderma Relat Disord. 2020;5(2_suppl):6–16.

  4. Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, et al. The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders. Front Cell Dev Biol. 2020;8:607483.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kasper M, Barth K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep. 2017;22:37(6).

    Google Scholar 

  6. Corvol H, Flamein F, Epaud R, Clement A, Guillot L. Lung alveolar epithelium and interstitial lung disease. Int J Biochem Cell Biol. 2009;41(8-9):1643–51.

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, He A, Li H, Chen H, Xie H, Luo L, et al. TSSK4 upregulation in alveolar epithelial type-II cells facilitates pulmonary fibrosis through HSP90-AKT signaling restriction and AT-II apoptosis. Cell Death Dis. 2021;12(10):938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. •Valenzi E, Tabib T, Papazoglou A, Sembrat J, Trejo Bittar HE, Rojas M, et al. Disparate Interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front Immunol. 2021;12:595811. An important study using single cell RNA sequencing technique for to generate comparative transcriptome profile of SSc-ILD and IPF lungs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Depianto DJ, Vander HJA, Morshead KB, Sun KH, Modrusan Z, Teng G, et al. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. 2021;6(8):e143626. https://doi.org/10.1172/jci.insight.143626.

  10. Yamada Z, Nishio J, Motomura K, Mizutani S, Yamada S, Mikami T, et al. Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine fibrosing interstitial lung disease. Front Immunol. 2022;18:13.

    Google Scholar 

  11. •Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972. An important study identified novel ECM producing epithelial subset, which enriched in pulmonary fibrosis lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 2021;131(2):e143226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. •Fang D, Chen B, Lescoat A, Khanna D, Mu R. Immune cell dysregulation as a mediator of fibrosis in systemic sclerosis. Nat Rev Rheumatol. 2022;18(12):683–93. A relevant review described immune abnormalities are one of the major hallmarks of SSc.

    Article  PubMed  Google Scholar 

  14. Tourkina E, Bonner M, Oates J, Hofbauer A, Richard M, Znoyko S, et al. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: Reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair. 2011;4(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kreuter M, Lee JS, Tzouvelekis A, Oldham JM, Molyneaux PL, Weycker D, et al. Monocyte count as a prognostic biomarker in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2021;204(1):74–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathai SK, Gulati M, Peng X, Russell TR, Shaw AC, Rubinowitz AN, et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest. 2010;90(6):812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trombetta AC, Soldano S, Contini P, Tomatis V, Ruaro B, Paolino S, et al. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir Res. 2018;19(1):186.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rudnik M, Hukara A, Kocherova I, Jordan S, Schniering J, Milleret V, et al. Elevated fibronectin levels in profibrotic CD14+ monocytes and CD14+ macrophages in systemic sclerosis. Front Immunol. 2021;12:642891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamashita M, Utsumi Y, Nagashima H, Nitanai H, Yamauchi K. S100A9/CD163 expression profiles in classical monocytes as biomarkers to discriminate idiopathic pulmonary fibrosis from idiopathic nonspecific interstitial pneumonia. Sci Rep. 2021;11(1):12135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scott MKD, Quinn K, Li Q, Carroll R, Warsinske H, Vallania F, et al. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicentre cohort study. Lancet Respir Med. 2019;7(6):497–508.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bernardinello N, Grisostomi G, Cocconcelli E, Castelli G, Petrarulo S, Biondini D, et al. The clinical relevance of lymphocyte to monocyte ratio in patients with Idiopathic Pulmonary Fibrosis (IPF). Respir Med. 2022;191:106686.

    Article  PubMed  Google Scholar 

  22. Fraser E, Denney L, Antanaviciute A, Blirando K, Vuppusetty C, Zheng Y, et al. Multi-modal characterization of monocytes in idiopathic pulmonary fibrosis reveals a primed type I interferon immune phenotype. Front Immunol. 2021;12:623430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res. 2018;19(1):170.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manetti M. Deciphering the alternatively activated (M2) phenotype of macrophages in scleroderma. Exp Dermatol. 2015;24(8):576–8.

    Article  CAS  PubMed  Google Scholar 

  25. •Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis. 2019;78(10):1379–87. This study established fibroblast heterogeneity in SSc-ILD using single cell RNA technology.

    Article  CAS  PubMed  Google Scholar 

  26. Liossis SNC, Staveri C. The role of B cells in scleroderma lung disease pathogenesis. Front Med (Lausanne). 2022;9:936182.

    Article  PubMed  Google Scholar 

  27. Ali MF, Egan AM, Shaughnessy GF, Anderson DK, Kottom TJ, Dasari H, et al. Antifibrotics modify B-cell-induced fibroblast migration and activation in patients with idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;64(6):722–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Truchetet ME, Brembilla NC, Montanari E, Allanore Y, Chizzolini C. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: Association with interstitial lung disease. Arthritis Res Ther. 2011;13(5).

  29. Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev. 2015;24(135):102–14.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang M, Zhang S. T cells in fibrosis and fibrotic diseases. Front Immunol. 2020;11:1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Resp J. 2020;56(1):1900100.

    Article  CAS  Google Scholar 

  32. Ramadhiani R, Ikeda K, Hirata KI, Emoto N. Endothelial cell senescence exacerbates pulmonary fibrosis potentially through accelerated endothelial to mesenchymal transition. Kobe J Med Sci. 2021;67(3):E84–91.

    PubMed  PubMed Central  Google Scholar 

  33. Jia W, Wang Z, Gao C, Wu J, Wu Q. Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis. 2021;12(4):327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pulito-Cueto V, Remuzgo-Martínez S, Genre F, Atienza-Mateo B, Mora-Cuesta VM, Iturbe-Fernández D, et al. Endothelial progenitor cells: Relevant players in the vasculopathy and lung fibrosis associated with the presence of interstitial lung disease in systemic sclerosis patients. Biomedicines. 2021;9(7):847.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pulito-Cueto V, Remuzgo-Martínez S, Genre F, Mora-Cuesta VM, Iturbe-Fernández D, Fernández-Rozas S, et al. Endothelial progenitor cells as a potential biomarker in interstitial lung disease associated with rheumatoid arthritis. J Clin Med. 2020;9(12):4098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Qin X, Qin H, Jia C, Yuan Y, Sun T, et al. Characterization of the heterogeneity of endothelial cells in bleomycin-induced lung fibrosis using single-cell RNA sequencing. Angiogenesis. 2021;24(4):809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung CF. Origin of myofibroblasts in lung fibrosis. Lung injury current tissue microenvironment reports. 2020;1:155–62. https://doi.org/10.1007/s43152-020-00022-9.

    Article  CAS  Google Scholar 

  38. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast. Am J Pathol. 2007;170(6):1807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blaauboer ME, Boeijen FR, Emson CL, Turner SM, Zandieh-Doulabi B, Hanemaaijer R, et al. Extracellular matrix proteins: A positive feedback loop in lung fibrosis? Matrix Biology. Feb. 2014;34:170–8.

    CAS  Google Scholar 

  40. Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M. Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight. 2021;6(6):e144799. https://doi.org/10.1172/jci.insight.144799.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1):45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jandl K, Kwapiszewska G. Stiffness of the extracellular matrix: A regulator of prostaglandins in pulmonary fibrosis? Am J Respir Cell Mol Biol. 2020;63(6):721–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Seminars in Arthritis and Rheumatism. W.B. Saunders; 2021 Feb;51(1):310-317.

    Google Scholar 

  44. Herrera J, Forster C, Pengo T, Montero A, Swift J, Schwartz MA, et al. Registration of the extracellular matrix components constituting the fibroblastic focus in idiopathic pulmonary fibrosis. JCI Insight. 2019;4(1):e125185.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khedoe P, Marges E, Hiemstra P, Ninaber M, Geelhoed M. Interstitial lung disease in patients with systemic sclerosis: toward personalized-medicine-based prediction and drug screening models of Systemic Sclerosis-related Interstitial Lung Disease (SSc-ILD). Front Immunol. 2020;4:11.

    Google Scholar 

  46. Razdan N, Vasilopoulos T, Herbig U. Telomere dysfunction promotes transdifferentiation of human fibroblasts into myofibroblasts. Aging Cell. 2018;17(6):e12838.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Piñeiro-Hermida S, Martínez P, Bosso G, Flores JM, Saraswati S, Connor J, et al. Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun. 2022;13(1):5656.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lakota K, Hanumanthu VS, Agrawal R, Carns M, Armanios M, Varga J. Short lymphocyte, but not granulocyte, telomere length in a subset of patients with systemic sclerosis. Ann Rheum Dis. 2019;78(8):1142–4.

    Article  PubMed  Google Scholar 

  49. Guo T, He C, Venado A, Zhou Y. Extracellular matrix stiffness in lung health and disease. Compr Physiol. 2022;12(3):3523–58.

  50. Santos A, Lagares D. Matrix stiffness: the conductor of organ fibrosis. Curr Rheumatol Rep. 2018;20(1):2.

    Article  PubMed  Google Scholar 

  51. Nho RS, Ballinger MN, Rojas MM, Ghadiali SN, Horowitz JC. Biomechanical force and cellular stiffness in lung fibrosis. Am J Pathol. 2022;192(5):750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur Resp Rev. 2018;27(148):180033.

    Article  Google Scholar 

  53. Lindahl GE, Stock CJW, Shi-Wen X, Leoni P, Sestini P, Howat SL, et al. Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease. Respir Res. 2013;14(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 2018 Mar 27;22(13):3625–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. ••Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587(7835):619–25. An important study which created human lung atlas using single-cell RNA sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun. 2020;11(1):1920. https://doi.org/10.1038/s41467-020-15647-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. ••Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1983. Another important study using single cell RNA sequencing to generate single-cell atlas of the IPF lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonella F, Patuzzo G, Lunardi C. Biomarker discovery in systemic sclerosis: state of the art. Curr Biomark Find. 2015;5:47–68. https://doi.org/10.2147/CBF.S60446.

    Article  Google Scholar 

  59. Thannickal VJ, Antony VB. Is personalized medicine a realistic goal in idiopathic pulmonary fibrosis? Exp Rev Resp Med. 2018;12(6):441–3.

    Article  CAS  Google Scholar 

  60. Ebata S, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. New era in systemic sclerosis treatment: recently approved therapeutics. J Clin Med. 2022;11(15):4631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. ••Khanna D, Lescoat A, Roofeh D, Bernstein EJ, Kazerooni EA, Roth MD, et al. systemic sclerosis–associated interstitial lung disease: how to incorporate two food and drug administration–approved therapies in clinical practice. Arthritis and Rheumatol. 2022;74(1):13–27. A recent comprehensive review focused on the future pharmacologic and nonpharmacologic options for the treatment of SSc-ILD.

    Article  CAS  Google Scholar 

  62. Kokosi MA, Margaritopoulos GA, Wells AU. Personalised medicine in interstitial lung diseases. Eur Resp Rev. 2018;30:27(148).

    Google Scholar 

  63. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3(1):17074.

    Article  PubMed  Google Scholar 

  64. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018;378(19):1811–23.

    Article  CAS  PubMed  Google Scholar 

  65. Seedat UF. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med. 386(23):2178–87.

  66. Health NJ. Saracatinib in the Treatment of Idiopathic Pulmonary Fibrosis (STOP-IPF). 2020-2023:NCT04598919. https://classic.clinicaltrials.gov/ct2/show/NCT04598919.

  67. Campochiaro C, Allanore Y. An update on targeted therapies in systemic sclerosis based on a systematic review from the last 3 years. Arthritis Res Ther. 2021 Dec 1;23(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Spierings J, Chiu YH, Voortman M, van Laar JM. Autologous stem-cell transplantation in systemic sclerosis-associated interstitial lung disease: early action in selected patients rather than escalation therapy for all. Ther Adv Musculoskelet Dis. 2021;13:1759720X2110351.

    Article  Google Scholar 

  69. Cheng W, Zeng Y, Wang D. Stem cell-based therapy for pulmonary fibrosis. Stem Cell Res Ther. 2022;13(1):492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, et al. Idiopathic pulmonary fibrosis: Current and future treatment. Clin Respir J. 2022 Feb 10;16(2):84–96.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Finnerty JP, Ponnuswamy A, Dutta P, Abdelaziz A, Kamil H. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: a systematic review and meta-analysis. BMC Pulm Med. 2021;21(1):411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. ••Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol. 2020;16(1):11–31. An important review described the mechanism of how myofibroblasts evade from apoptosis in the fibrotic microenvironment.

    Article  CAS  PubMed  Google Scholar 

  73. Bonhomme O, André B, Gester F, De Seny D, Moermans C, Struman I, et al. Biomarkers in systemic sclerosis-associated interstitial lung disease: Review of the literature. Rheumatology (Oxford). 2019;58(9):1534–46.

    Article  CAS  PubMed  Google Scholar 

  74. Drakopanagiotakis F, Wujak L, Wygrecka M, Markart P. Biomarkers in idiopathic pulmonary fibrosis. Matrix Biol. 2018;68-69:404–21.

    Article  CAS  PubMed  Google Scholar 

  75. Guiot J, Moermans C, Henket M, Corhay JL, Louis R. Blood biomarkers in idiopathic pulmonary fibrosis. Lung. 2017;195(3):273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ley B, Brown KK, Collard HR. Molecular biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2014;307(9):L681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Elhai M, Avouac J, Allanore Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand? Semin Arthritis Rheum. 2020;50(3):480–91.

    Article  CAS  PubMed  Google Scholar 

  78. Ramírez-Aragón M, Hernández-Sánchez F, Rodríguez-Reyna TS, Buendía-Roldán I, Güitrón-Castillo G, Núñez-Alvarez CA, et al. The transcription factor scx is a potential serum biomarker of fibrotic diseases. Int J Mol Sci. 2020;21(14):1–20.

    Article  Google Scholar 

  79. Lota HK, Renzoni EA. Circulating biomarkers of interstitial lung disease in systemic sclerosis. Int J Rheumatol. 2012;2012:121439.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bagnato G, Roberts WN, Roman J, Gangemi S. A systematic review of overlapping microrna patterns in systemic sclerosis and idiopathic pulmonary fibrosis. Eur Respir Rev. 2017;26(144):160125.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kris Shah for editing.

Funding

This study was supported by grants from the National Institutes of Health, National Institute of Arthritis, and Musculoskeletal and Skin Diseases (NIAMS AR074997) and the National Scleroderma Foundation.

Author information

Authors and Affiliations

Authors

Contributions

PV and SB wrote the review; SBa and JV reviewed and edited.

Corresponding author

Correspondence to Swati Bhattacharyya ph.D.

Ethics declarations

Conflict of Interest

Priyanka Verma declares that she has no conflict of interest. Swarna Bale declares that she has no conflict of interest. John Varga declares that he has no conflict of interest. Swati Bhattacharyya declares that she has no conflict of interest.

Human and animal rights and informed consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Bale, S., Varga, J. et al. Molecular Mechanisms Underlying Systemic Sclerosis–Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: an Update. Curr Treat Options in Rheum 9, 221–235 (2023). https://doi.org/10.1007/s40674-023-00213-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-023-00213-z

Keywords

Navigation