Skip to main content

Advertisement

Log in

Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Podocytes are essential for maintaining kidney glomerular functions. Injuries to podocyte are closely related to the pathological process of proteinuria. However, a treatment for podocyte injury has still not been established. Cilostazol (CSZ) and probucol (PBC) have been shown to possess renoprotective effects. Therefore, we evaluated these drugs in a lipopolysaccharide (LPS)-induced podocyte injury model. 7-week-old female C57BL/6J mice were fed a normal diet or a diet containing 0.3% CSZ, 0.5% PBC, or both for 10 days. Then, mice were intraperitoneally injected with 13 μg g−1 body weight LPS. Both CSZ and PBC decreased LPS-induced albuminuria and co-administration was found to be most effective. These treatments ameliorated the upregulation of monocyte chemoattractant protein 1. In cultured podocytes, CSZ suppressed LPS-induced activation of nuclear factor-kappa B (NF-κB) and phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). PBC reduced LPS-induced activation of NF-κB and reactive oxygen species production. Furthermore, PBC decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase4 expression. Our findings suggest that CSZ and PBC are able to inhibit podocyte-injury through different mechanisms, indicating that a combination of these two old drugs is a good treatment option to protect podocytes from injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davison SN, Levin A, Moss AH, Jha V, Brown EA, Brennan F, Murtagh FE, Naicker S, Germain MJ, O’Donoghue DJ, Morton RL, Obrador GT (2015) Executive summary of the KDIGO controversies conference on supportive care in chronic kidney disease: developing a roadmap to improving quality care. Kidney Int 88(3):447–459

    Article  PubMed  Google Scholar 

  2. Impellizzeri D, Esposito E, Attley J, Cuzzocrea S (2014) Targeting inflammation: new therapeutic approaches in chronic kidney disease (ckd). Pharmacol Res 81:91–102

    Article  CAS  PubMed  Google Scholar 

  3. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  PubMed  Google Scholar 

  4. Lal MA, Young KW, Andag U (2015) Targeting the podocyte to treat glomerular kidney disease. Drug Discov Today 20(10):1228–1234

    Article  CAS  PubMed  Google Scholar 

  5. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71(12):1205–1214

    Article  CAS  PubMed  Google Scholar 

  6. Suwanpen C, Nouanthong P, Jaruvongvanich V, Pongpirul K, Pongpirul WA, Leelahavanichkul A, Kanjanabuch T (2016) Urinary podocalyxin, the novel biomarker for detecting early renal change in obesity. J Nephrol 29(1):37–44

    Article  CAS  PubMed  Google Scholar 

  7. Trimarchi H, Canzonieri R, Schiel A, Politei J, Stern A, Andrews J, Paulero M, Rengel T, Araoz A, Forrester M, Lombi F, Pomeranz V, Iriarte R, Young P, Muryan A, Zotta E (2016) Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. J Nephrol (Epub ahead of print)

  8. Tohma T, Shimabukuro M, Oshiro Y, Yamakawa M, Shimajiri Y, Takasu N (2004) Cilostazol, a phosphodiesterase inhibitor, reduces microalbuminuria in the insulin-resistant otsuka long-evans tokushima fatty rat. Metabolism 53(11):1405–1410

    Article  CAS  PubMed  Google Scholar 

  9. Umeda F, Kuroki T, Nawata H (1995) Prostaglandins and diabetic nephropathy. J Diabetes Complications 9(4):334–336

    Article  CAS  PubMed  Google Scholar 

  10. Endo K, Miyashita Y, Sasaki H, Ohira M, Saiki A, Koide N, Otsuka M, Oyama T, Takeyoshi M, Ito Y, Shirai K (2006) Probucol delays progression of diabetic nephropathy. Diabetes Res Clin Pract 71(2):156–163

    Article  CAS  PubMed  Google Scholar 

  11. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113(10):1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun Y, He L, Takemoto M, Patrakka J, Pikkarainen T, Genove G, Norlin J, Truve K, Tryggvason K, Betsholtz C (2009) Glomerular transcriptome changes associated with lipopolysaccharide-induced proteinuria. Am J Nephrol 29(6):558–570

    Article  CAS  PubMed  Google Scholar 

  13. Nam BY, Paeng J, Kim SH, Lee SH, Kim do H, Kang HY, Li JJ, Kwak SJ, Park JT, Yoo TH, Han SH, Kim DK, Kang SW (2012) The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis 17(1):1–13

    Article  CAS  PubMed  Google Scholar 

  14. Yoshikawa T, Mitani K, Kotosai K, Nozako M, Miyakoda G, Yabuuchi Y (2008) Antiatherogenic effects of cilostazol and probucol alone, and in combination in low density lipoprotein receptor-deficient mice fed with a high fat diet. Horm Metab Res 40(7):473–478

    Article  CAS  PubMed  Google Scholar 

  15. Sakairi T, Abe Y, Jat PS, Kopp JB (2010) Cell–cell contact regulates gene expression in CDK4-transformed mouse podocytes. Am J Physiol Renal Physiol 299(4):F802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakamoto K, Kuno K, Takemoto M, He P, Ishikawa T, Onishi S, Ishibashi R, Okabe E, Shoji M, Hattori A, Yamaga M, Kobayashi K, Kawamura H, Tokuyama H, Maezawa Y, Yokote K (2015) Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries. J Diabetes Res 2015:727152

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin l is a mechanism for proteinuric kidney disease. J Clin Invest 117(8):2095–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nat Med 14(9):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee EY, Chung CH, Khoury CC, Yeo TK, Pyagay PE, Wang A, Chen S (2009) The monocyte chemoattractant protein-1/ccr2 loop, inducible by tgf-beta, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 297(1):F85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Rangan GK, Goodwin B, Tay YC, Harris DC (2000) Lipopolysaccharide-induced mcp-1 gene expression in rat tubular epithelial cells is nuclear factor-kappab dependent. Kidney Int 57(5):2011–2022

    Article  CAS  PubMed  Google Scholar 

  21. Oberbach A, Schlichting N, Bluher M, Kovacs P, Till H, Stolzenburg JU, Neuhaus J (2010) Palmitate induced il-6 and mcp-1 expression in human bladder smooth muscle cells provides a link between diabetes and urinary tract infections. PLoS One 5(5):e10882

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baeuerle PA, Henkel T (1994) Function and activation of nf-kappa b in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  23. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151

    Article  CAS  PubMed  Google Scholar 

  24. Sudo T, Ito H, Kimura Y (2003) Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14(6):381–390

    Article  CAS  PubMed  Google Scholar 

  25. Greiber S, Muller B, Daemisch P, Pavenstadt H (2002) Reactive oxygen species alter gene expression in podocytes: induction of granulocyte macrophage-colony-stimulating factor. J Am Soc Nephrol 13(1):86–95

    CAS  PubMed  Google Scholar 

  26. Eid AA, Gorin Y, Fagg BM, Maalouf R, Barnes JL, Block K, Abboud HE (2009) Mechanisms of podocyte injury in diabetes: role of cytochrome p450 and nadph oxidases. Diabetes 58(5):1201–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim EY, Anderson M, Wilson C, Hagmann H, Benzing T, Dryer SE (2013) Nox2 interacts with podocyte trpc6 channels and contributes to their activation by diacylglycerol: essential role of podocin in formation of this complex. Am J Physiol Cell Physiol 305(9):C960–971

    Article  CAS  PubMed  Google Scholar 

  28. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interaction of tlr4 with nad(p)h oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of nf-kappa b. J Immunol 173(6):3589–3593

    Article  CAS  PubMed  Google Scholar 

  29. Ben Mkaddem S, Pedruzzi E, Werts C, Coant N, Bens M, Cluzeaud F, Goujon JM, Ogier-Denis E, Vandewalle A (2010) Heat shock protein gp96 and NAD(P)H oxidase 4 play key roles in toll-like receptor 4-activated apoptosis during renal ischemia/reperfusion injury. Cell Death Differ 17(9):1474–1485

    Article  CAS  PubMed  Google Scholar 

  30. Betsholtz C, He L, Takemoto M, Norlin J, Sun Y, Patrakka J, Tryggvason K (2007) The glomerular transcriptome and proteome. Nephron Exp Nephrol 106(2):e32–e36

    Article  CAS  PubMed  Google Scholar 

  31. Patrakka J, Tryggvason K (2010) Molecular make-up of the glomerular filtration barrier. Biochem Biophys Res Commun 396(1):164–169

    Article  CAS  PubMed  Google Scholar 

  32. Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C, Porsti I, Rissanen A, Kaprio J, Mustonen J, Groop PH, Lehto M (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34(8):1809–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boutagy NE, McMillan RP, Frisard MI, Hulver MW (2016) Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie 124:11–20

    Article  CAS  PubMed  Google Scholar 

  34. Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14(1):55–63

    Article  CAS  PubMed  Google Scholar 

  35. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, Maiguel D, Karumanchi SA, Yap HK, Saleem M, Zhang Q, Nikolic B, Chaudhuri A, Daftarian P, Salido E, Torres A, Salifu M, Sarwal MM, Schaefer F, Morath C, Schwenger V, Zeier M, Gupta V, Roth D, Rastaldi MP, Burke G, Ruiz P, Reiser J (2011) Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17(8):952–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, Sperling LS, Lerakis S, Quyyumi AA, Reiser J (2015) Soluble urokinase receptor and chronic kidney disease. N Engl J Med 373(20):1916–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee HW, Khan SQ, Faridi MH, Wei C, Tardi NJ, Altintas MM, Elshabrawy HA, Mangos S, Quick KL, Sever S, Reiser J, Gupta V (2015) A podocyte-based automated screening assay identifies protective small molecules. J Am Soc Nephrol 26(11):2741–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mooranian A, Negrulj R, Chen-Tan N, Al-Sallami HS, Fang Z, Mukkur TK, Mikov M, Golocorbin-Kon S, Fakhoury M, Watts GF, Matthews V, Arfuso F, Al-Salami H (2014) Microencapsulation as a novel delivery method for the potential antidiabetic drug, probucol. Drug Des Devel Ther 8:1221–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Zhao S, Huang B, Wang Y, Li Y, Waqar AB, Liu R, Bai L, Fan J, Liu E (2013) Probucol and cilostazol exert a combinatorial anti-atherogenic effect in cholesterol-fed rabbits. Thromb Res 132(5):565–571

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Mrs. Aki Watanabe and Mrs. Naoko Koizumi (Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine) for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Takemoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was carried out in strict accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH publication no. 85-23, revised 1985). The protocol was approved by the Committee on the Ethics of the Animal Care and Use of Chiba University, Japan (Permit Number: 25-255).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Kawamura, H., Takemoto, M. et al. Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms. J Nephrol 30, 531–541 (2017). https://doi.org/10.1007/s40620-016-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-016-0361-y

Keywords

Navigation