Skip to main content
Log in

Role of thyroid stimulating hormone in the maintenance and functioning of the human corpus luteum

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the impact of high thyroid stimulating hormone (TSH) levels on human granulosa–luteal (hGL) cells.

Methods

hGL cells were isolated from follicular aspirates derived from patients undergoing IVF treatment without any thyroid disorder (serum TSH 0.5–2 mU/L). Cells were cultured at 37 °C in DMEM, supplemented with 5% FBS. The cells were treated with 1 nM LH and increasing concentrations of TSH. At the end of culture, conditioned medium and cells were collected to analyze progesterone production, cell viability, and mRNA levels of genes involved in the steroidogenesis process. Human ovarian tissues were analyzed for TSH receptor (TSHR) expression by IHC.

Results

The expression of TSHR was detected in human corpus luteum by IHC and in hGL by RT-PCR. In hGL cells, TSH treatment did not modulate progesterone production nor the expression of steroidogenic genes, such as p450scc and HSD3b 1/2. However, TSH induced a dose-dependent increase in cell death. Finally, TSH did not affect LH-induced p450scc and HSD3b1/2 expression while LH partially reverted TSH negative effect on cell death in hGL.

Conclusions

Elevated TSH levels in hypothyroid women may be associated with impaired CL functioning and maintenance. These findings open a new line of research for the importance of the treatment of women with thyroid dysfunction that could contribute to the onset of infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Lazarus JH (2011) Thyroid function in pregnancy. Br Med Bull 97:137–148. https://doi.org/10.1093/bmb/ldq039

    Article  CAS  Google Scholar 

  2. Mintziori G, Anagnostis P, Toulis KA, Goulis DG (2012) Thyroid diseases and female reproduction. Minerva Med 103(1):47–62

    CAS  PubMed  Google Scholar 

  3. Cho MK (2015) Thyroid dysfunction and subfertility. Clin Exp Reprod Med 42(4):131–135. https://doi.org/10.5653/cerm.2015.42.4.131

    Article  PubMed Central  Google Scholar 

  4. Barbieri R (2019) Female Infertility. In: Strauss JF BR (ed) Yen and Jaffe's Reproductive Endocrinology Eighth Edition ed. Elsevier. 556–581.e557. https://doi.org/10.1016/B978-0-323-47912-7.00022-6

  5. Silva JF, Ocarino NM, Serakides R (2018) Thyroid hormones and female reproduction. Biol Reprod 99(5):907–921. https://doi.org/10.1093/biolre/ioy115

    Article  Google Scholar 

  6. Kaprara A, Krassas GE (2008) Thyroid autoimmunity and miscarriage. Hormones (Athens) 7(4):294–302. https://doi.org/10.14310/horm.2002.1210

  7. Krassas G, Karras SN, Pontikides N (2015) Thyroid diseases during pregnancy: a number of important issues. Hormones (Athens) 14(1):59–69. https://doi.org/10.1007/BF03401381

    Article  PubMed  Google Scholar 

  8. Poppe K, Velkeniers B, Glinoer D (2007) Thyroid disease and female reproduction. Clin Endocrinol (Oxf) 66(3):309–321. https://doi.org/10.1111/j.1365-2265.2007.02752.x

    Article  CAS  Google Scholar 

  9. Vissenberg R, Manders VD, Mastenbroek S, Fliers E, Afink GB, Ris-Stalpers C, Goddijn M, Bisschop PH (2015) Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update 21(3):378–387. https://doi.org/10.1093/humupd/dmv004

    Article  CAS  PubMed  Google Scholar 

  10. Budenhofer BK, Ditsch N, Jeschke U, Gartner R, Toth B (2013) Thyroid (dys-)function in normal and disturbed pregnancy. Arch Gynecol Obstet 287(1):1–7. https://doi.org/10.1007/s00404-012-2592-z

    Article  CAS  PubMed  Google Scholar 

  11. Parkes IL, Schenker JG, Shufaro Y (2012) Thyroid disorders during pregnancy. Gynecol Endocrinol 28(12):993–998. https://doi.org/10.3109/09513590.2012.692001

    Article  CAS  Google Scholar 

  12. Mazzilli R, Medenica S, Di Tommaso AM, Fabozzi G, Zamponi V, Cimadomo D, Rienzi L, Ubaldi FM, Watanabe M, Faggiano A, La Vignera S, Defeudis G (2023) The role of thyroid function in female and male infertility: a narrative review. J Endocrinol Invest 46(1):15–26. https://doi.org/10.1007/s40618-022-01883-7

    Article  CAS  Google Scholar 

  13. Toulis KA, Goulis DG, Venetis CA, Kolibianakis EM, Tarlatzis BC, Papadimas I (2009) Thyroid autoimmunity and miscarriages: the corpus luteum hypothesis. Med Hypotheses 73(6):1060–1062. https://doi.org/10.1016/j.mehy.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  14. Hoermann R, Broecker M, Grossmann M, Mann K, Derwahl M (1994) Interaction of human chorionic gonadotropin (hCG) and asialo-hCG with recombinant human thyrotropin receptor. J Clin Endocrinol Metab 78(4):933–938. https://doi.org/10.1210/jcem.78.4.8157724

    Article  CAS  PubMed  Google Scholar 

  15. Hidaka A, Minegishi T, Kohn LD (1993) Thyrotropin, like luteinizing hormone (LH) and chorionic gonadotropin (CG), increases cAMP and inositol phosphate levels in cells with recombinant human LH/CG receptor. Biochem Biophys Res Commun 196(1):187–195. https://doi.org/10.1006/bbrc.1993.2233

    Article  CAS  PubMed  Google Scholar 

  16. Zhang SS, Carrillo AJ, Darling DS (1997) Expression of multiple thyroid hormone receptor mRNAs in human oocytes, cumulus cells, and granulosa cells. Mol Hum Reprod 3(7):555–562. https://doi.org/10.1093/molehr/3.7.555

    Article  CAS  PubMed  Google Scholar 

  17. Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C (2014) Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 20(6):884–904. https://doi.org/10.1093/humupd/dmu028

    Article  CAS  PubMed  Google Scholar 

  18. Di Paolo V, Mangialardo C, Zaca C, Barberi M, Sereni E, Borini A, Centanni M, Coticchio G, Verga-Falzacappa C, Canipari R (2020) Thyroid hormones T3 and T4 regulate human luteinized granulosa cells, counteracting apoptosis and promoting cell survival. J Endocrinol Invest. https://doi.org/10.1007/s40618-019-01169-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fredrikson H, Rydin H (1947) The thyroid-ovarian correlation in the rabbit. Acta Physiol Scand 14(1–2):136–143. https://doi.org/10.1111/j.1748-1716.1947.tb00447.x

    Article  CAS  PubMed  Google Scholar 

  20. Maruo T, Katayama K, Barnea ER, Mochizuki M (1992) A role for thyroid hormone in the induction of ovulation and corpus luteum function. Horm Res 37(Suppl 1):12–18. https://doi.org/10.1159/000182338

    Article  CAS  PubMed  Google Scholar 

  21. Mutinati M, Desantis S, Rizzo A, Zizza S, Ventriglia G, Pantaleo M, Sciorsci RL (2010) Localization of thyrotropin receptor and thyroglobulin in the bovine corpus luteum. Anim Reprod Sci 118(1):1–6. https://doi.org/10.1016/j.anireprosci.2009.05.019

    Article  CAS  Google Scholar 

  22. Aghajanova L, Lindeberg M, Carlsson IB, Stavreus-Evers A, Zhang P, Scott JE, Hovatta O, Skjoldebrand-Sparre L (2009) Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online 18(3):337–347. https://doi.org/10.1016/S1472-6483(10)60091-0

    Article  CAS  Google Scholar 

  23. Cimadomo D, Vaiarelli A, Petriglia C, Fabozzi G, Ferrero S, Schimberni M, Argento C, Colamaria S, Giuliani M, Ubaldi N, Rienzi L, Ubaldi FM (2021) Oocyte competence is independent of the ovulation trigger adopted: a large observational study in a setting that entails vitrified-warmed single euploid blastocyst transfer. J Assist Reprod Genet 38(6):1419–1427. https://doi.org/10.1007/s10815-021-02124-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rienzi L, Ubaldi F, Anniballo R, Cerulo G, Greco E (1998) Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod 13(4):1014–1019. https://doi.org/10.1093/humrep/13.4.1014

    Article  CAS  PubMed  Google Scholar 

  25. Canipari R, Mangialardo C, Di Paolo V, Alfei F, Ucci S, Russi V, Santaguida MG, Virili C, Segni M, Misiti S, Centanni M, Verga Falzacappa C (2018) Thyroid hormones act as mitogenic and pro survival factors in rat ovarian follicles. J Endocrinol Invest 42(3):271–282. https://doi.org/10.1007/s40618-018-0912-2

    Article  CAS  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Stewart DR, Vandevoort CA (1997) Simulation of human luteal endocrine function with granulosa lutein cell culture. J Clin Endocrinol Metab 82(9):3078–3083. https://doi.org/10.1210/jcem.82.9.4240

    Article  CAS  Google Scholar 

  28. Ben-Ze’ev A, Amsterdam A (1989) Regulation of cytoskeletal protein organization and expression in human granulosa cells in response to gonadotropin treatment. Endocrinology 124(2):1033–1041. https://doi.org/10.1210/endo-124-2-1033

    Article  CAS  PubMed  Google Scholar 

  29. Karlsson AB, Maizels ET, Flynn MP, Jones JC, Shelden EA, Bamburg JR, Hunzicker-Dunn M (2010) Luteinizing hormone receptor-stimulated progesterone production by preovulatory granulosa cells requires protein kinase A-dependent activation/dephosphorylation of the actin dynamizing protein cofilin. Mol Endocrinol 24(9):1765–1781. https://doi.org/10.1210/me.2009-0487

    Article  CAS  PubMed Central  Google Scholar 

  30. Lawrence TS, Ginzberg RD, Gilula NB, Beers WH (1979) Hormonally induced cell shape changes in cultured rat ovarian granulosa cells. J Cell Biol 80(1):21–36. https://doi.org/10.1083/jcb.80.1.21

    Article  CAS  Google Scholar 

  31. Robker RL, Richards JS (1998) Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation. Biol Reprod 59(3):476–482. https://doi.org/10.1095/biolreprod59.3.476

    Article  CAS  PubMed  Google Scholar 

  32. Bagnjuk K, Mayerhofer A (2019) Human luteinized granulosa cells-A cellular model for the human corpus luteum. Front Endocrinol (Lausanne) 10:452. https://doi.org/10.3389/fendo.2019.00452

    Article  PubMed  Google Scholar 

  33. Quinn MC, McGregor SB, Stanton JL, Hessian PA, Gillett WR, Green DP (2006) Purification of granulosa cells from human ovarian follicular fluid using granulosa cell aggregates. Reprod Fertil Dev 18(5):501–508. https://doi.org/10.1071/rd05051

    Article  CAS  Google Scholar 

  34. Bruckova L, Soukup T, Visek B, Moos J, Moosova M, Pavelkova J, Rezabek K, Kucerova L, Micuda S, Brcakova E, Mokry J (2011) Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid. J Assist Reprod Genet 28(10):939–950. https://doi.org/10.1007/s10815-011-9617-6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Keren-Tal I, Suh BS, Dantes A, Lindner S, Oren M, Amsterdam A (1995) Involvement of p53 expression in cAMP-mediated apoptosis in immortalized granulosa cells. Exp Cell Res 218(1):283–295. https://doi.org/10.1006/excr.1995.1157

    Article  CAS  PubMed  Google Scholar 

  36. Aharoni D, Dantes A, Oren M, Amsterdam A (1995) cAMP-mediated signals as determinants for apoptosis in primary granulosa cells. Exp Cell Res 218(1):271–282. https://doi.org/10.1006/excr.1995.1156

    Article  CAS  PubMed  Google Scholar 

  37. McCracken JA, Custer EE, Lamsa JC (1999) Luteolysis: a neuroendocrine-mediated event. Physiol Rev 79(2):263–323. https://doi.org/10.1152/physrev.1999.79.2.263

    Article  CAS  PubMed  Google Scholar 

  38. Orly J, Farkash Y, Hershkovits N, Mizrahi L, Weinberger P (1982) Ovarian substance induces steroid production in cultured granulosa cells. In Vitro 18(12):980–989. https://doi.org/10.1007/BF02796372

    Article  CAS  PubMed  Google Scholar 

  39. De Silva M (1994) Detection and measurement of thyroid stimulating hormone in human follicular fluid. J Reprod Med 39(9):679–680

    PubMed  Google Scholar 

  40. Monteleone P, Faviana P, Artini PG (2017) Thyroid peroxidase identified in human granulosa cells: another piece to the thyroid-ovary puzzle? Gynecol Endocrinol 33(7):574–576. https://doi.org/10.1080/09513590.2017.1296424

    Article  CAS  Google Scholar 

  41. Tian L, Song Y, Xing M, Zhang W, Ning G, Li X, Yu C, Qin C, Liu J, Tian X, Sun X, Fu R, Zhang L, Zhang X, Lu Y, Zou J, Wang L, Guan Q, Gao L, Zhao J (2010) A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 52(4):1401–1409. https://doi.org/10.1002/hep.23800

    Article  CAS  PubMed  Google Scholar 

  42. Mazziotti G, Porcelli T, Patelli I, Vescovi PP, Giustina A (2010) Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone 46(3):747–751. https://doi.org/10.1016/j.bone.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  43. Xin W, Yu Y, Ma Y, Gao Y, Xu Y, Chen L, Wan Q (2017) Thyroid-stimulating hormone stimulation downregulates autophagy and promotes apoptosis in chondrocytes. Endocr J 64(7):749–757. https://doi.org/10.1507/endocrj.EJ16-0534

    Article  CAS  PubMed  Google Scholar 

  44. Felske D, Gagnon A, Sorisky A (2015) Interacting effects of TSH and insulin on human differentiated adipocytes. Horm Metab Res 47(9):681–685. https://doi.org/10.1055/s-0034-1395673

    Article  CAS  PubMed  Google Scholar 

  45. Velkeniers B, Van Meerhaeghe A, Poppe K, Unuane D, Tournaye H, Haentjens P (2013) Levothyroxine treatment and pregnancy outcome in women with subclinical hypothyroidism undergoing assisted reproduction technologies: systematic review and meta-analysis of RCTs. Hum Reprod Update 19(3):251–258. https://doi.org/10.1093/humupd/dms052

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Liu A, Liu H, Li C, Wang W, Han C, Wang X, Zhang Y, Teng W, Shan Z (2019) Maternal TSH levels at first trimester and subsequent spontaneous miscarriage: a nested case-control study. Endocr Connect 8(9):1288–1293. https://doi.org/10.1530/EC-19-0316

    Article  CAS  PubMed Central  Google Scholar 

  47. Gao H, Lu X, Huang H, Ji H, Zhang L, Su Z (2021) Thyroid-stimulating hormone level is negatively associated with fertilization rate in patients with polycystic ovary syndrome undergoing in vitro fertilization. Int J Gynaecol Obstet 155(1):138–145. https://doi.org/10.1002/ijgo.13581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stefania Fera and Tiziana Biscetti for excellent technical support.

Funding

This study was supported by Ateneo Sapienza Funds to R. C. and Ministry of Research MIUR Grant PRIN 2017 2017TK7Z8L to EV.

Author information

Authors and Affiliations

Authors

Contributions

DC, RM, LR, FMU, RC, EV,RA contributed to the study conception and design; material collection was performed by FI, LD, SMF; methodology: MT, CC, NB, GS, OA and VA; formal analysis and investigation: MT, CC, RC, EV; supervision: RC, EV; writing—original draft preparation MT; writing—review and editing: RC and EV; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to R. Canipari or E. Vicini.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Institutional review board approval to the study was obtained.

Research involving human participants and/or animals

The present study complies with the guidelines for human studies.

Informed consent

All patients consented to the anonymous donation of waste material of IVF.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taggi, M., Capponi, C., Bertani, N. et al. Role of thyroid stimulating hormone in the maintenance and functioning of the human corpus luteum. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-023-02269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-023-02269-z

Keywords

Navigation