Skip to main content

Advertisement

Log in

Age-related blunting of the phagocyte arsenal and its art of killing

  • Molecular Biology of Cell Death and Aging (N Razdan and N Muhammad, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phagocytosis is one of the integral parts of the host defense mechanism employed against invading pathogens. Cells which can sense and identify a pathogenic signal and can clear it by virtue of phagocytosis-dependent cell killing are known as phagocytes. Another important function of phagocytes is the removal of apoptotic cells, crucial for maintaining tissue homeostasis. However, these essential functions of phagocytes declined with age, leading toward age-dependent immune dysfunction. In this article, we have reviewed a detailed mechanistic approach of the phagocytosis process, in the context of the age-dependent alterations of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PAMPS:

Pathogen-associated molecular patterns

DAMPS:

Damage-associated molecular pattern

PICD:

Pathogen-induced cell death

DC:

Dendritic cells

MARCO:

The macrophage receptor with collagenous structure

PRE:

Pigment epithelial cells

CRs:

Complement receptors

LPC:

Lysophosphatidylcholine

L1P:

Sphingosine-1-phosphate

CRT:

Calreticulin

BAI1:

Brain-specific angiogenesis inhibitor 1

TIM:

T cell immunoglobulin mucin

NETs:

Neutrophil extracellular traps

MCAF:

Macrophage chemotactic and activating factor

References

  1. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120(4):435–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.

    CAS  PubMed  Google Scholar 

  3. Linehan E, Fitzgerald D. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol. 2015;5(1):14–24.

    CAS  Google Scholar 

  4. Gordon SM. Elie Metchnikoff: father of natural immunity. Eur J Immunol. 2008;38(12):3257–64. https://doi.org/10.1002/eji.200838855.

    Article  CAS  PubMed  Google Scholar 

  5. Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med. 2010;207(9):1807–17. https://doi.org/10.1084/jem.20101157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LAJ, et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21(2):325–32. https://doi.org/10.1096/fj.06-7227rev.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. Neutrophils in innate and adaptive immunity. Semin Immunopathol. 2013;35(4):377–94. https://doi.org/10.1007/s00281-013-0374-8.

    Article  CAS  PubMed  Google Scholar 

  8. Watson RWG, Redmond HP, Wang JH, Condron C, BouchierHayes D. Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol. 1996;156(10):3986–92.

    CAS  PubMed  Google Scholar 

  9. de Cathelineau AM, Henson PM. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem. 2003;39:105–17. https://doi.org/10.1042/Bse0390105.

    Article  Google Scholar 

  10. Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 1995;5(3):85–7. https://doi.org/10.1016/s0962-8924(00)88955-2.

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE, Kim YA, et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol. 2010;11(5):427–U90. https://doi.org/10.1038/ni.1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S. Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol. 2010;191(6):1205–18. https://doi.org/10.1083/jcb.201007056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall SE, Savill JS, Henson PM, Haslett C. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J Immunol. 1994;153(7):3218–27.

    CAS  PubMed  Google Scholar 

  14. Williams-Herman D, Werb Z. Phagocytosis by nonprofessional phagocytes. Adv Cell Molec Biol Membr Organ. 1999;5:47–67.

    CAS  Google Scholar 

  15. Ezekowitz R, Sastry K, Bailly P, Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med. 1990;172(6):1785–94.

    CAS  PubMed  Google Scholar 

  16. Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood. 2004;104(13):4038–45.

    CAS  PubMed  Google Scholar 

  17. Peiser L, Gough PJ, Kodama T, Gordon S. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun. 2000;68(4):1953–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schiff DE, Kline L, Soldau K, Lee JD, Pugin J, Tobias PS, et al. Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism. J Leukoc Biol. 1997;62(6):786–94.

    CAS  PubMed  Google Scholar 

  19. Fan XL, Stelter F, Menzel R, Jack R, Spreitzer I, Hartung T, et al. Structures in Bacillus subtilis are recognized by CD14 in a lipopolysaccharide binding protein-dependent reaction. Infect Immun. 1999;67(6):2964–8. https://doi.org/10.1128/Iai.67.6.2964-2968.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, et al. CD36 mediates the phagocytosis of Plasmodium falciparum–infected erythrocytes by rodent macrophages. J Infect Dis. 2004;189(2):204–13.

    CAS  PubMed  Google Scholar 

  21. Dorrington MG, Roche AM, Chauvin SE, Tu ZY, Mossman KL, Weiser JN, et al. MARCO is required for TLR2- and Nod2-mediated responses to Streptococcus pneumoniae and clearance of pneumococcal colonization in the murine nasopharynx. J Immunol. 2013;190(1):250–8. https://doi.org/10.4049/jimmunol.1202113.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK. Phagocytosis mediated by three distinct Fc gamma receptor classes on human leukocytes. J Exp Med. 1990;171(4):1333–45. https://doi.org/10.1084/jem.171.4.1333.

    Article  CAS  PubMed  Google Scholar 

  23. Ross GD, Reed W, Dalzell JG, Becker SE, Hogg N. Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes. J Leukoc Biol. 1992;51(2):109–17. https://doi.org/10.1002/jlb.51.2.109.

    Article  CAS  PubMed  Google Scholar 

  24. Rosales C, Uribe-Querol E. Antibody-Fc receptor interactions in antimicrobial functions. Curr Immunol Rev. 2013;9(1):44–55.

    CAS  Google Scholar 

  25. Rosales C. Molecular mechanisms of phagocytosis. Springer; 2005.

  26. Tohyama Y, Yamamura H. Complement-mediated phagocytosis - The role of Syk. IUBMB Life. 2006;58(5-6):304–8. https://doi.org/10.1080/15216540600746377.

    Article  CAS  PubMed  Google Scholar 

  27. Rosales C. Fc receptor and integrin signaling in phagocytes. Signal Transduct. 2007;7(5-6):386–401.

    CAS  Google Scholar 

  28. van Lookeren Campagne M, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9(9):2095–102. https://doi.org/10.1111/j.1462-5822.2007.00981.x.

    Article  CAS  PubMed  Google Scholar 

  29. Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, et al. Migration to apoptotic “Find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem. 2008;283(9):5296–305. https://doi.org/10.1074/jbc.M706586200.

    Article  CAS  PubMed  Google Scholar 

  30. Gevrey J-C, Isaac BM, Cox D. Syk is required for monocyte/macrophage chemotaxis to CX3CL1 (Fractalkine). J Immunol. 2005;175(6):3737–45.

    CAS  PubMed  Google Scholar 

  31. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008;112(13):5026–36.

    CAS  PubMed  Google Scholar 

  32. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 2008;22(8):2629–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461(7261):282–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Caruso S, Poon IK. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:1486.

    PubMed  PubMed Central  Google Scholar 

  35. Fadok VA, Voelker D, Campbell P, Cohen J, Bratton D, Henson P. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148(7):2207–16.

    CAS  PubMed  Google Scholar 

  36. Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci. 2010;1209(1):77–82.

    CAS  PubMed  Google Scholar 

  37. Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, Brown SB, et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest. 2009;119(1):20–32.

    CAS  PubMed  Google Scholar 

  38. Bournazou I, Mackenzie KJ, Duffin R, Rossi AG, Gregory CD. Inhibition of eosinophil migration by lactoferrin. Immunol Cell Biol. 2010;88(2):220–3.

    CAS  PubMed  Google Scholar 

  39. Weyd H, Abeler-Dörner L, Linke B, Mahr A, Jahndel V, Pfrang S, et al. Annexin A1 on the surface of early apoptotic cells suppresses CD8+ T cell immunity. PLoS One. 2013;8(4).

  40. Linke B, Abeler-Dörner L, Jahndel V, Kurz A, Mahr A, Pfrang S, et al. The tolerogenic function of annexins on apoptotic cells is mediated by the annexin core domain. J Immunol. 2015;194(11):5233–42.

    CAS  PubMed  Google Scholar 

  41. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47–SIRPα signalling pathway. Trends Cell Biol. 2009;19(2):72–80.

    CAS  PubMed  Google Scholar 

  42. Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47–SIRPα signalling system: its physiological roles and therapeutic application. J Biochem. 2014;155(6):335–44.

    CAS  PubMed  Google Scholar 

  43. Si M, Okazawa H, Ohnishi H, Sato R, Kaneko Y, Kobayashi H, et al. Role of the CD47–SHPS-1 system in regulation of cell migration. EMBO J. 2003;22(11):2634–44.

    Google Scholar 

  44. Oldenborg P-A, Zheleznyak A, Fang Y-F, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–4.

    CAS  PubMed  Google Scholar 

  45. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321–34.

    CAS  PubMed  Google Scholar 

  46. Lv Z, Bian Z, Shi L, Niu S, Ha B, Tremblay A, et al. Loss of cell surface CD47 clustering formation and binding avidity to SIRPα facilitate apoptotic cell clearance by macrophages. J Immunol. 2015;195(2):661–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature. 2002;418(6894):200–3.

    CAS  PubMed  Google Scholar 

  49. Park D, Tosello-Trampont A-C, Elliott MR, Lu M, Haney LB, Ma Z, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007;450(7168):430–4.

    CAS  PubMed  Google Scholar 

  50. Mori K, Kanemura Y, Fujikawa H, Nakano A, Ikemoto H, Ozaki I, et al. Brain-specific angiogenesis inhibitor 1 (BAI1) is expressed in human cerebral neuronal cells. Neurosci Res. 2002;43(1):69–74.

    CAS  PubMed  Google Scholar 

  51. Hamoud N, Tran V, Croteau L-P, Kania A, Côté J-F. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci. 2014;111(10):3745–50.

    CAS  PubMed  Google Scholar 

  52. Park S, Jung M, Kim H, Lee S, Kim S, Lee B, et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 2008;15(1):192–201.

    CAS  PubMed  Google Scholar 

  53. Lee S-J, So I-S, Park S-Y, Kim I-S. Thymosin β4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett. 2008;582(15):2161–6.

    CAS  PubMed  Google Scholar 

  54. Park S-Y, Kang K-B, Thapa N, Kim S-Y, Lee S-J, Kim I-S. Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment. J Biol Chem. 2008;283(16):10593–600.

    CAS  PubMed  Google Scholar 

  55. Park S-Y, Jung M-Y, Lee S-J, Kang K-B, Gratchev A, Riabov V, et al. Stabilin-1 mediates phosphatidylserine-dependent clearance of cell corpses in alternatively activated macrophages. J Cell Sci. 2009;122(18):3365–73.

    CAS  PubMed  Google Scholar 

  56. Kzhyshkowska J, Gratchev A, Goerdt S. Stabilin-1, a homeostatic scavenger receptor with multiple functions. J Cell Mol Med. 2006;10(3):635–49.

    CAS  PubMed  Google Scholar 

  57. Qian H, Johansson S, McCourt P, Smedsrød B, Ekblom M, Johansson S. Stabilins are expressed in bone marrow sinusoidal endothelial cells and mediate scavenging and cell adhesive functions. Biochem Biophys Res Commun. 2009;390(3):883–6.

    CAS  PubMed  Google Scholar 

  58. Santiago C, Ballesteros A, Martínez-Muñoz L, Mellado M, Kaplan GG, Freeman GJ, et al. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity. 2007;27(6):941–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118(5):1657–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood. 2009;113(16):3821–30.

    CAS  PubMed  Google Scholar 

  61. Albacker LA, Karisola P, Chang Y-J, Umetsu SE, Zhou M, Akbari O, et al. TIM-4, a receptor for phosphatidylserine, controls adaptive immunity by regulating the removal of antigen-specific T cells. J Immunol. 2010;185(11):6839–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Park D, Hochreiter-Hufford A, Ravichandran KS. The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol. 2009;19(4):346–51.

    PubMed  Google Scholar 

  63. Nishi C, Toda S, Segawa K, Nagata S. Tim4-and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol Cell Biol. 2014;34(8):1512–20.

    PubMed  PubMed Central  Google Scholar 

  64. Flannagan RS, Canton J, Furuya W, Glogauer M, Grinstein S. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol Biol Cell. 2014;25(9):1511–22.

    PubMed  PubMed Central  Google Scholar 

  65. Choi S-C, Simhadri VR, Tian L, Gil-Krzewska A, Krzewski K, Borrego F, et al. Cutting edge: mouse CD300f (CMRF-35–like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis. J Immunol. 2011;187(7):3483–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Murakami Y, Tian L, Voss O, Margulies D, Krzewski K, Coligan J. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death Differ. 2014;21(11):1746–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 2011;12(4):358–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417(6885):182–7.

    CAS  PubMed  Google Scholar 

  69. Akakura S, Singh S, Spataro M, Akakura R, Kim J-I, Albert ML, et al. The opsonin MFG-E8 is a ligand for the αvβ5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res. 2004;292(2):403–16.

    CAS  PubMed  Google Scholar 

  70. Sasaki T, Knyazev PG, Cheburkin Y, Göhring W, Tisi D, Ullrich A, et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6 receptor tyrosine kinase activation by laminin g-like domains. J Biol Chem. 2002;277(46):44164–70.

    CAS  PubMed  Google Scholar 

  71. Uehara H, Shacter E. Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J Immunol. 2008;180(4):2522–30.

    CAS  PubMed  Google Scholar 

  72. Ogden CA. deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194(6):781–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Segal AW, Dorling J, Coade S. Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes. Biochemical and morphological studies. J Cell Biol. 1980;85(1):42–59.

    CAS  PubMed  Google Scholar 

  74. Mayer-Scholl A, Averhoff P, Zychlinsky A. How do neutrophils and pathogens interact? Curr Opin Microbiol. 2004;7(1):62–6.

    CAS  PubMed  Google Scholar 

  75. Hietbrink F, Koenderman L, Althuizen M, Pillay J, Kamp V, Leenen LP. Kinetics of the innate immune response after trauma: implications for the development of late onset sepsis. Shock. 2013;40(1):21–7.

    CAS  PubMed  Google Scholar 

  76. Botha AJ, Moore FA, Moore EE, Kim FJ, Banerjee A, Peterson VM. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery. 1995;118(2):358–65.

    CAS  PubMed  Google Scholar 

  77. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fox ED, Heffernan DS, Cioffi WG, Reichner JS. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Crit Care. 2013;17(5):R226.

    PubMed  PubMed Central  Google Scholar 

  79. Weiss SJ. Tissue destruction by neutrophils. New Engl J Med. 1989;320(6):365–76.

    CAS  PubMed  Google Scholar 

  80. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey B-G, O’Connor TP, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183(4):2867–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev. 2016;273(1):156–79.

    CAS  PubMed  Google Scholar 

  82. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014;289(11):7884–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Canton J, Khezri R, Glogauer M, Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell. 2014;25(21):3330–41.

    PubMed  PubMed Central  Google Scholar 

  84. Cassatella M, Bazzoni F, Flynn RM, Dusi S, Trinchieri G, Rossi F. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J Biol Chem. 1990;265(33):20241–6.

    CAS  PubMed  Google Scholar 

  85. Balce DR, Li B, Allan ER, Rybicka JM, Krohn RM, Yates RM. Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood. 2011;118(15):4199–208.

    CAS  PubMed  Google Scholar 

  86. Liu Y-C, Zou X-B, Chai Y-F, Yao Y-M. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520–9.

    PubMed  PubMed Central  Google Scholar 

  87. Bhattacharya S, Chakraborty M, Bose M, Mukherjee D, Roychoudhury A, Dhar P, et al. Indian freshwater edible snail Bellamya bengalensis lipid extract prevents T cell mediated hypersensitivity and inhibits LPS induced macrophage activation. J Ethnopharmacol. 2014;157:320–9.

    CAS  PubMed  Google Scholar 

  88. Chakraborty M, Bhattacharya S, Mishra R, Saha SS, Bhattacharjee P, Dhar P, et al. Combination of low dose major n3 PUFAs in fresh water mussel lipid is an alternative of EPA–DHA supplementation in inflammatory conditions of arthritis and LPS stimulated macrophages. PharmaNutrition. 2015;3(2):67–75.

    CAS  Google Scholar 

  89. Basu A, Das AS, Sharma M, Pathak MP, Chattopadhyay P, Biswas K, et al. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochem Biophys Rep. 2017;12:54–61.

    PubMed  PubMed Central  Google Scholar 

  90. Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB. Bitter melon enhances natural killer–mediated toxicity against head and neck cancer cells. Cancer Prev Res. 2017;10(6):337–44.

    CAS  Google Scholar 

  91. Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 2018;23(13):3946–59. e6.

    CAS  PubMed  Google Scholar 

  92. Mercer F, Ng SH, Brown TM, Boatman G, Johnson PJ. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biol. 2018;16(2):e2003885.

    PubMed  PubMed Central  Google Scholar 

  93. Brown GC, Neher JJ. Eaten alive! Cell death by primary phagocytosis:‘phagoptosis’. Trends Biochem Sci. 2012;37(8):325–32.

    CAS  PubMed  Google Scholar 

  94. Benseler V, Warren A, Vo M, Holz LE, Tay SS, Le Couteur DG, et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc Natl Acad Sci. 2011;108(40):16735–40.

    CAS  PubMed  Google Scholar 

  95. Wang S, He M, Chen Y, Wang M, Yu X, Bai J, et al. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell Death Dis. 2013;4(10):e856–e.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 2006;66(7):3629–38.

    CAS  PubMed  Google Scholar 

  97. Cano CE, Sandí MJ, Hamidi T, Calvo EL, Turrini O, Bartholin L, et al. Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Molec Med. 2012;4(9):964–79.

    CAS  Google Scholar 

  98. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131(5):966–79.

    CAS  PubMed  Google Scholar 

  99. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    PubMed  PubMed Central  Google Scholar 

  100. Katz JM, Plowden J, Renshaw-Hoelscher M, Lu X, Tumpey TM, Sambhara S. Immunity to influenza. Immunol Res. 2004;29(1-3):113–24.

    CAS  PubMed  Google Scholar 

  101. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

    CAS  PubMed  Google Scholar 

  103. Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience. 2009;158(3):1030–8.

    CAS  PubMed  Google Scholar 

  104. Erwig L-P, Henson PM. Immunological consequences of apoptotic cell phagocytosis. Am J Pathol. 2007;171(1):2–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick J-S. The effects of ageing on the colonic bacterial microflora in adults. Z Gastroenterol. 2009;47(07):653–8.

    CAS  PubMed  Google Scholar 

  106. Gomez CR, Boehmer ED, Kovacs EJ. The aging innate immune system. Curr Opin Immunol. 2005;17(5):457–62.

    CAS  PubMed  Google Scholar 

  107. Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S. CD4+ CD25+ Foxp3+ T cells and CD4+ CD25− Foxp3+ T cells in aged mice. J Immunol. 2006;176(11):6586–93.

    CAS  PubMed  Google Scholar 

  108. Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond WP, Dale DC. Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J Gerontol. 1993;48(5):M207–M12.

    CAS  PubMed  Google Scholar 

  109. Biasi D, Carletto A, Dell’Agnola C, Caramaschi P, Montesanti F, Zavateri G, et al. Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation. 1996;20(6):673–81.

    CAS  PubMed  Google Scholar 

  110. Kovacs EJ, Palmer JL, Fortin CF, Fülöp T Jr, Goldstein DR, Linton P-J. Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol. 2009;30(7):319–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S. Innate immunity in aging: impact on macrophage function. Aging Cell. 2004;3(4):161–7.

    CAS  PubMed  Google Scholar 

  112. Sebastián C, Herrero C, Serra M, Lloberas J, Blasco MA, Celada A. Telomere shortening and oxidative stress in aged macrophages results in impaired STAT5a phosphorylation. J Immunol. 2009;183(4):2356–64.

    PubMed  Google Scholar 

  113. Videla LA, Tapia G, Fernández V. Influence of aging on Kupffer cell respiratory activity in relation to particle phagocytosis and oxidative stress parameters in mouse liver. Redox Rep. 2001;6(3):155–9.

    CAS  PubMed  Google Scholar 

  114. Linehan E, Dombrowski Y, Snoddy R, Fallon PG, Kissenpfennig A, Fitzgerald DC. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell. 2014;13(4):699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ashcroft GS, Horan MA, Ferguson MW. The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model. J Anat. 1997;190(3):351–65.

    PubMed  PubMed Central  Google Scholar 

  116. Ashcroft GS, Horan MA, Ferguson M. Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing. Lab Investig. 1998;78(1):47–58.

    CAS  PubMed  Google Scholar 

  117. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol. 2002;169(9):4697–701.

    CAS  PubMed  Google Scholar 

  118. Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ. Advanced age alters monocyte and macrophage responses. Antioxid Redox Signal. 2016;25(15):805–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gomez CR, Karavitis J, Palmer JL, Faunce DE, Ramirez L, Nomellini V, et al. Interleukin-6 contributes to age-related alteration of cytokine production by macrophages. Mediat Inflamm. 2010;2010:1–7.

    Google Scholar 

  120. Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ, et al. Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J Leukoc Biol. 2006;79(6):1314–27.

    CAS  PubMed  Google Scholar 

  121. Fallah MP, Chelvarajan RL, Garvy BA, Bondada S. Role of phosphoinositide 3-kinase–Akt signaling pathway in the age-related cytokine dysregulation in splenic macrophages stimulated via TLR-2 or TLR-4 receptors. Mech Ageing Dev. 2011;132(6-7):274–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Verschoor CP, Johnstone J, Loeb M, Bramson JL, Bowdish DM. Anti-pneumococcal deficits of monocyte-derived macrophages from the advanced-age, frail elderly and related impairments in PI3K-AKT signaling. Hum Immunol. 2014;75(12):1192–6.

    CAS  PubMed  Google Scholar 

  123. Youm Y-H, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 2013;18(4):519–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Herrero C, Marqués L, Lloberas J, Celada A. IFN-γ–dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J Clin Invest. 2001;107(4):485–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li Q, Xiao H. Isobe K-i. Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J Gerontol Ser A Biol Med Sci. 2002;57(3):B93–B8.

    Google Scholar 

  126. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315–29.

    CAS  PubMed  Google Scholar 

  127. Song Y, Shen H, Du W, Goldstein DR. Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages. Aging Cell. 2013;12(5):794–801.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Bhattacharya.

Ethics declarations

Conflict of interest

Authors share no financial conflict of interests

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Molecular Biology of Cell Death and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.S., Mishra, R. & Bhattacharya, S. Age-related blunting of the phagocyte arsenal and its art of killing. Curr Mol Bio Rep 6, 126–138 (2020). https://doi.org/10.1007/s40610-020-00135-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-020-00135-y

Keywords

Navigation