Skip to main content
Log in

Molecular Control of Growth-Related Sodium-Phosphate Co-transporter (SLC34A3)

  • Molecular Control of Phosphorus Homeostasis (B van der Eerden, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The type IIa sodium-dependent inorganic phosphate transporter (NaPi-IIa) has a central regulatory role in inorganic phosphate (Pi) homeostasis. Many studies have reported on the functions and regulatory mechanisms of NaPi-IIa. NaPi-IIc, however, was initially identified as a NaPi transporter required for growth in rodents. The gene encoding NaPi-IIc is causative for hereditary hypophosphatemic rickets with hypercalciuria and considered to be a critical NaPi transporter in the human kidney. However, the physiological roles and regulatory mechanisms of NaPi-IIc are not sufficiently elucidated. Recent studies show that NaPi-IIc is tightly regulated by a variety of agonists and physiological conditions via partially defined molecular mechanisms, including transcriptional and posttranscriptional regulation, protein phosphorylation, trafficking (endocytosis, exocytosis, and recycling), and the association of NaPi-IIc with interacting protein complexes. These data provide further information about understanding of human renal Pi handling. Here, we review recent findings regarding the molecular control of NaPi-IIc transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Spitzer A, Barac-Nieto M. Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol. 2001;16:763–71.

    Article  CAS  Google Scholar 

  2. Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev. 2000;80:1373–409.

    Article  CAS  Google Scholar 

  3. Silverstein DM, Barac-Nieto M, Murer H, Spitzer A. A putative growth-related renal Na(+)-Pi cotransporter. Am J Physiol. 1997;273:R928–33.

    Article  CAS  Google Scholar 

  4. Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab. 2016;34:1–10.

    Article  CAS  Google Scholar 

  5. Wagner CA, Rubio-Aliaga I, Hernando N. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol. 2017. https://doi.org/10.1007/s00467-017-3873-3.

  6. Lederer E. Regulation of serum phosphate. J Physiol. 2014;592:3985–95.

    Article  CAS  Google Scholar 

  7. Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch Eur J Physiol. 2014;466:139–53.

    Article  CAS  Google Scholar 

  8. Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch Eur J Physiol. 2019;471:149–163.

  9. Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab. 2012;30:1–9.

    Article  CAS  Google Scholar 

  10. Santos F, Fuente R, Mejia N, Mantecon L, Gil-Pena H, Ordonez FA. Hypophosphatemia and growth. Pediatr Nephrol. 2013;28:595–603.

    Article  Google Scholar 

  11. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.

    Article  CAS  Google Scholar 

  12. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.

    Article  CAS  Google Scholar 

  13. •• Forster IC. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflugers Arch Eur J Physiol. 2018;471:15–42 This review provides key information in regarding to the transport mechanism of SLC34 proteins at the molecular level.

    Article  Google Scholar 

  14. Fenollar-Ferrer C, Forrest LR. Structural models of the NaPi-II sodium-phosphate cotransporters. Arch Eur J Physiol. 2018;471:43–52.

    Article  Google Scholar 

  15. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998;95:5372–7.

    Article  CAS  Google Scholar 

  16. Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch Eur J Physiol. 2003;446:106–15.

    Article  CAS  Google Scholar 

  17. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277:19665–72.

    Article  CAS  Google Scholar 

  18. Kuwahara S, Aranami F, Segawa H, Onitsuka A, Honda N, Tominaga R, et al. Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c. J Med Invest : JMI. 2012;59:116–26.

    Article  Google Scholar 

  19. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Ren Physiol. 2007;292:F769–79.

    Article  CAS  Google Scholar 

  20. Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA, Hsieh JC, et al. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol. 2007;103:381–8.

    Article  CAS  Google Scholar 

  21. Masuda M, Yamamoto H, Kozai M, Tanaka S, Ishiguro M, Takei Y, et al. Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors. Biochem J. 2010;429:583–92.

    Article  CAS  Google Scholar 

  22. Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K. Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol. 2013;180:86–97.

    Article  CAS  Google Scholar 

  23. Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, et al. Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem. 1999;274:28256–63.

    Article  CAS  Google Scholar 

  24. Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1-34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol : CJASN. 2012;7:139–45.

    Article  CAS  Google Scholar 

  25. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Ren Physiol. 2007;292:F395–403.

    Article  CAS  Google Scholar 

  26. Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2012;302:C1316–30.

    Article  CAS  Google Scholar 

  27. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, et al. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Ren Physiol. 2005;288:F587–96.

    Article  CAS  Google Scholar 

  28. Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, et al. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Cell Physiol. 2011;301:C850–61.

    Article  CAS  Google Scholar 

  29. Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Ito M, Kaneko I et al. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Clin Exp Nephrol. 2018. https://doi.org/10.1007/s10157-018-1653-4.

  30. Shiozaki Y, Segawa H, Ohnishi S, Ohi A, Ito M, Kaneko I, et al. Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. J Med Invest : JMI. 2015;62:209–18.

    Article  Google Scholar 

  31. Villa-Bellosta R, Barac-Nieto M, Breusegem SY, Barry NP, Levi M, Sorribas V. Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int. 2008;73:456–64.

    Article  CAS  Google Scholar 

  32. Giral H, Lanzano L, Caldas Y, Blaine J, Verlander JW, Lei T, et al. Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J Biol Chem. 2011;286:15032–42.

    Article  CAS  Google Scholar 

  33. Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, et al. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med. 1987;316:125–9.

    Article  CAS  Google Scholar 

  34. Jones A, Tzenova J, Frappier D, Crumley M, Roslin N, Kos C, et al. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene. J Am Soc Nephrol : JASN. 2001;12:507–14.

    CAS  PubMed  Google Scholar 

  35. Jaureguiberry G, Carpenter TO, Forman S, Juppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Ren Physiol. 2008;295:F371–9.

    Article  CAS  Google Scholar 

  36. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, et al. Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab. 2007;25:407–13.

    Article  Google Scholar 

  37. Lightwood R, Stapleton T. Idiopathic hypercalcaemia in infants. Lancet. 1953;265:255–6.

    Article  CAS  Google Scholar 

  38. •• Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol : JASN. 2016;27:604–14 The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia.

    Article  CAS  Google Scholar 

  39. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, et al. Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol : JASN. 2009;20:104–13.

    Article  CAS  Google Scholar 

  40. Myakala K, Motta S, Murer H, Wagner CA, Koesters R, Biber J, et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Ren Physiol. 2014;306:F833–43.

    Article  CAS  Google Scholar 

  41. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Ren Physiol. 2009;297:F671–8.

    Article  CAS  Google Scholar 

  42. Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–30.

    Article  CAS  Google Scholar 

  43. Wagner CA, Biber J, Murer H. Of men and mice: who is in control of renal phosphate reabsorption? J Am Soc Nephrol : JASN. 2008;19:1625–6.

    Article  Google Scholar 

  44. Kuro-o M. A potential link between phosphate and aging—lessons from klotho-deficient mice. Mech Ageing Dev. 2010;131:270–5.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 23689045 to H. Segawa, No. 26293204 to K. Miyamoto), and the Salt Science Research Foundation (No. 1322 to K. Miyamoto).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroko Segawa or Ken-Ichi Miyamoto.

Ethics declarations

Conflict of Interest

Hiroko Segawa, Ichiro Kaneko, Yuji Shiozaki, Mikiko Ito, Sawako Tatsumi, and Ken-Ichi Miyamoto each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Molecular Control of Phosphorus Homeostasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segawa, H., Kaneko, I., Shiozaki, Y. et al. Molecular Control of Growth-Related Sodium-Phosphate Co-transporter (SLC34A3). Curr Mol Bio Rep 5, 26–33 (2019). https://doi.org/10.1007/s40610-019-0112-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-019-0112-7

Keywords

Navigation