Skip to main content
Log in

Solution of the non-linear time-fractional Kudryashov–Sinelshchikov equation using fractional reduced differential transform method

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In this research, we analyze the non-linear time-fractional Kudryashov–Sinelshchikov equation, which represents waves induced by pressure inside the combination of gas bubbles and liquid, considering heat transfer and viscidness of liquid among gas bubbles and liquid. The non-linear Kudryashov–Sinelshchikov equation having fractional order is numerically solved employing the fractional reduced differential transform method (FRDTM). We have conducted a convergence analysis of the solution series obtained through FRDTM. Also, the FRDTM generates the solution without perturbation, discretization, or linearization. The numerical solution and error analysis of this non-linear Kudryashov–Sinelshchikov equation having fractional order with respect to time using FRDTM completely conforms with the exact solution as shown precisely in 2D and 3D graphs. The results of this research demonstrate the effectiveness and accuracy of the FRDTM in solving the non-linear time-fractional Kudryashov–Sinelshchikov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kudryashov, N.A., Sinelshchikov, D.I.: Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer. Phys. Lett. Sect. A Gen. At. Solid State Phys. 374(19–20), 2011–2016 (2010). https://doi.org/10.1016/j.physleta.2010.02.067

    Article  CAS  Google Scholar 

  2. Gupta, A.K., Saha Ray, S.: On the solitary wave solution of fractional Kudryashov–Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles. Appl. Math. Comput. 298, 1–12 (2017). https://doi.org/10.1016/j.amc.2016.11.003

    Article  MathSciNet  Google Scholar 

  3. Kumar, S., Niwas, M., Dhiman, S.K.: Abundant analytical soliton solutions and different wave profiles to the Kudryashov–Sinelshchikov equation in mathematical physics. J. Ocean Eng. Sci. 7(6), 565–577 (2022). https://doi.org/10.1016/j.joes.2021.10.009

    Article  Google Scholar 

  4. Khalid, K.A., Maneea, M.: New approximation solution for time-fractional Kudryashov–Sinelshchikov equation using novel technique. Alex. Eng. J. 72, 559–572 (2023). https://doi.org/10.1016/j.aej.2023.04.027

    Article  Google Scholar 

  5. Li, X., Tang, Y.: Interpolated coefficient mixed finite elements for semilinear time fractional diffusion equations. Fractal Fract. 7(6), 482 (2023). https://doi.org/10.3390/fractalfract7060482

    Article  Google Scholar 

  6. Zhang, J., Zhang, X., Yang, B.: An approximation scheme for the time fractional convection-diffusion equation. Appl. Math. Comput. 335, 305–312 (2018)

    MathSciNet  Google Scholar 

  7. Alwehebi, F., Hobiny, A., Maturi, D.: Variational iteration method for solving time fractional burgers equation using Maple. Appl. Math. 14(05), 336–348 (2023). https://doi.org/10.4236/am.2023.145021

    Article  Google Scholar 

  8. Wang, H., Xu, X., Dou, J., Zhang, T., Wei, L.: Local discontinuous Galerkin method for the time-fractional KdV equation with the Caputo-Fabrizio fractional derivative. J. Appl. Math. Phys. 10(06), 1918–1935 (2022). https://doi.org/10.4236/jamp.2022.106132

    Article  Google Scholar 

  9. Khan, A., Akram, T., Khan, A., Ahmad, S., Nonlaopon, K.: Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Math. 8(1), 1251–1268 (2023). https://doi.org/10.3934/math.2023063

    Article  MathSciNet  Google Scholar 

  10. Prajapati, V.J., Meher, R.: Solution of time-fractional Rosenau–Hyman model using a robust homotopy approach via formable transform. Iran. J. Sci. Technol. Trans. A Sci. 46(5), 1431–1444 (2022). https://doi.org/10.1007/s40995-022-01347-w

    Article  MathSciNet  Google Scholar 

  11. Okrasińska-Płociniczak, H., Płociniczak, Ł: Second order scheme for self-similar solutions of a time-fractional porous medium equation on the half-line. Appl. Math. Comput. 424, 127033 (2022). https://doi.org/10.1016/j.amc.2022.127033

    Article  MathSciNet  Google Scholar 

  12. Mukhtar, S.: Numerical analysis of the time-fractional Boussinesq equation in gradient unconfined aquifers with the Mittag–Leffler derivative. Symmetry (Basel) 15(3), 608 (2023). https://doi.org/10.3390/sym15030608

    Article  ADS  Google Scholar 

  13. Zhou, J.K.: Differential Transformation and Its Applications for Electronic Circuits, Huazhong Science & Technology University Press, China (1986). http://scholar.google.com.secure.sci-hub.io/scholar?q=J K Zhou Differential Transformation and Its Applications for Electrical Circuits Huazhong University Press Wuhan China 1986#1

  14. Keskin, Y., Oturanç, G.: Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 10(6), 741–749 (2009). https://doi.org/10.1515/IJNSNS.2009.10.6.741

    Article  Google Scholar 

  15. Gupta, P.K.: Approximate analytical solutions of fractional BenneyLin equation by reduced differential transform method and the homotopy perturbation method. Comput. Math. Appl. 61(9), 2829–2842 (2011). https://doi.org/10.1016/j.camwa.2011.03.057

    Article  ADS  MathSciNet  Google Scholar 

  16. Singh, B.K., Kumar, P.: FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier–Stokes equation. Ain Shams Eng. J. 9(4), 827–834 (2018). https://doi.org/10.1016/j.asej.2016.04.009

    Article  Google Scholar 

  17. Tamboli, V.K., Tandel, P.V.: Solution of the time-fractional generalized Burger-Fisher equation using the fractional reduced differential transform method. J. Ocean Eng. Sci. 7(4), 399–407 (2022). https://doi.org/10.1016/j.joes.2021.09.009

    Article  Google Scholar 

  18. Akinyemi, L., Akpan, U., Veeresha, P., Rezazadeh, H., Mustafa Inc: Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.02.011

    Article  Google Scholar 

  19. Kaplan, M., Akbulut, A.: The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method. Opt. Quantum Electron. 53(9), 498 (2021). https://doi.org/10.1007/s11082-021-03144-y

    Article  Google Scholar 

  20. Kaplan, M., Akbulut, A.: A mathematical analysis of a model involving an integrable equation for wave packet envelope. J. Math. (2022). https://doi.org/10.1155/2022/3486780

    Article  MathSciNet  Google Scholar 

  21. Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.M.: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Results Phys. 22, 103979 (2021). https://doi.org/10.1016/j.rinp.2021.103979

    Article  Google Scholar 

  22. Raza, N., Murtaza, I.G., Sial, S., Younis, M.: On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media 28(3), 553–569 (2018). https://doi.org/10.1080/17455030.2017.1368734

    Article  ADS  MathSciNet  Google Scholar 

  23. Zubair, A., Raza, N., Mirzazadeh, M., Liu, W., Zhou, Q.: Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities. Optik (Stuttg). 173, 249–262 (2018). https://doi.org/10.1016/j.ijleo.2018.08.023

    Article  ADS  Google Scholar 

  24. Raza, N., Zubair, A.: Optical dark and singular solitons of generalized nonlinear Schrödinger’s equation with anti-cubic law of nonlinearity. Mod. Phys. Lett. B 33(13), 1950158 (2019). https://doi.org/10.1142/S0217984919501586

    Article  ADS  CAS  Google Scholar 

  25. Raza, N., Javid, A.: Dynamics of optical solitons with Radhakrishnan–Kundu–Lakshmanan model via two reliable integration schemes. Optik (Stuttg) 178, 557–566 (2019). https://doi.org/10.1016/j.ijleo.2018.09.133

    Article  ADS  Google Scholar 

  26. Khan, K.A., Butt, A.R., Raza, N., Maqbool, K.: Unsteady magneto-hydrodynamics flow between two orthogonal moving porous plates. Eur. Phys. J. Plus 134(1), 1 (2019). https://doi.org/10.1140/epjp/i2019-12286-x

    Article  Google Scholar 

  27. Raza, N., Arshed, S., Javid, A.: Optical solitons and stability analysis for the generalized second-order nonlinear Schrödinger equation in an optical fiber. Int. J. Nonlinear Sci. Numer. Simul. 21(7–8), 855–863 (2020). https://doi.org/10.1515/ijnsns-2019-0287

    Article  MathSciNet  Google Scholar 

  28. Raza, N., Seadawy, A.R., Kaplan, M., Butt, A.R.: Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications. Phys. Scr. 96(10), 105216 (2021). https://doi.org/10.1088/1402-4896/ac0f93

    Article  ADS  Google Scholar 

  29. Ali, K.K., Maneea, M.: Optical soliton solutions for space fractional Schrödinger equation using similarity method. Results Phys. 46, 106284 (2023). https://doi.org/10.1016/j.rinp.2023.106284

    Article  Google Scholar 

  30. Khalid, K.A., Maneea, M.: Optical solitons using optimal homotopy analysis method for time-fractional (1+1)-dimensional coupled nonlinear Schrodinger equations. Optik (Stuttg). 283, 170907 (2023). https://doi.org/10.1016/j.ijleo.2023.170907

    Article  Google Scholar 

  31. Fan, Z.Y., Ali, K.K., Maneea, M., Yao, S.W., Mustafa Inc: Solution of time fractional Fitzhugh–Nagumo equation using semi analytical techniques. Results Phys. 51, 106679 (2023). https://doi.org/10.1016/j.rinp.2023.106679

    Article  Google Scholar 

  32. Ali, K.K., Maneea, M., Mohamed, M.S.: Solving nonlinear fractional models in superconductivity using the q-homotopy analysis transform method. J. Math. (2023). https://doi.org/10.1155/2023/6647375

    Article  MathSciNet  Google Scholar 

  33. Sene, N.: Analytical solutions of a class of fluids models with the Caputo fractional derivative. Fractal Fract. 6(1), 35 (2022). https://doi.org/10.3390/fractalfract6010035

    Article  Google Scholar 

  34. Lan, K.: Linear first order Riemann–Liouville fractional differential and perturbed Abel’s integral equations. J. Differ. Equ. 306, 28–59 (2022). https://doi.org/10.1016/j.jde.2021.10.025

    Article  ADS  MathSciNet  Google Scholar 

  35. Singh, B.K., Srivastava, V.K.: Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM. R. Soc. Open Sci. 2(4), 140511 (2015). https://doi.org/10.1098/rsos.140511

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  36. Srivastava, V.K., Kumar, S., Awasthi, M.K., Singh, B.K.: Two-dimensional time fractional-order biological population model and its analytical solution. Egypt. J. Basic Appl. Sci. 1(1), 71–76 (2014). https://doi.org/10.1016/j.ejbas.2014.03.001

    Article  Google Scholar 

  37. Keskin, Y., Oturanç, G.: Reduced differential transform method for generalized KdV equations. Math. Comput. Appl. 15(3), 382–393 (2010). https://doi.org/10.3390/mca15030382

    Article  MathSciNet  Google Scholar 

  38. Abbasbandy, S.: Numerical method for non-linear wave and diffusion equations by the variational iteration method. Int. J. Numer. Methods Eng. 73(12), 1836–1843 (2008). https://doi.org/10.1002/nme.2150

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study is not supported by any other sources for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti V. Tandel.

Ethics declarations

Conflict of interest

The authors disclose that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamboli, V.K., Tandel, P.V. Solution of the non-linear time-fractional Kudryashov–Sinelshchikov equation using fractional reduced differential transform method. Bol. Soc. Mat. Mex. 30, 24 (2024). https://doi.org/10.1007/s40590-024-00602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-024-00602-x

Keywords

Mathematics Subject Classification

Navigation