Skip to main content
Log in

On the influence of circulation on the linear stability of a system of a moving cylinder and two identical parallel vortex filaments

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

The interaction of a moving circular cylinder of radius R with the arbitrary circulation \(\gamma \) and two parallel vortex filaments of identical intensity are considered. The stability of a system of two vortex filaments and a cylinder located in the middle between them is studied. The filaments rotate around the cylinder at a constant angular velocity. The problem depends on three parameters \((q,a,\gamma )\): \(q=R^2/R_0^2,\) where \(2R_0\) is the distance between filaments, \(0<q<1,\) the added mass of the cylinder \(a>0\) and the circulation around cylinder \(\gamma \ne 0.\) The case \(\gamma =2\) was studied earlier. The purpose of this paper is to study the influence of circulation \(\gamma \) in the problem under consideration. The eigenvalues of the linearization matrix are studied for all parameter values. For fixed values of \(\gamma ,\) the parameter plane (qa) is divided into areas of two types: the area of instability, when the linearization matrix has at least one eigenvalue in the right half-plane, and the linear stability area—all eigenvalues lie on the imaginary axis. The results of the study are consistent with the limiting case of a fixed cylinder (for \(a\rightarrow \infty \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. von Helmholtz, H.: Über integrale der hydrodynamischen Gleichungen, welche der Wirbelbewegung entsprechen. J. für die reine und angewandte Mathematik 55, 173–196 (1858)

    MathSciNet  MATH  Google Scholar 

  2. Newton, P.K.: The \(n\)-Vortex Problem: Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, New York (2001)

  3. Borisov, A.V., Mamaev, I.S.: Mathematical Methods in the Dynamics of Vortex Structures, p. 368. Institute of Computer Sciences, Moscow–Izhevsk (2005)

    MATH  Google Scholar 

  4. Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48(6), 065401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sokolovskiy, M.A., Verron, J.: Dynamics of Vortex Structures in a Stratified Rotating Fluid. Atmospheric and Oceanographic Sciences Library, vol. 47. Springer, Switzerland (2014)

  6. Koshel, K.V., Ryzhov, E.A., Carton, X.J.: Vortex interactions subjected to deformation flows: a review. Fluids 4(1), 14 (2019)

    Article  Google Scholar 

  7. Dritschel, D.G., Sokolovskiy, M.A., Stremler, M.A.: Celebrating the 200th Anniversary of the Birth of Hermann Ludwig Ferdinand von Helmholtz (31.08.1821–08.09.1894). Regul. Chaotic Dyn. 26(5), 463–466 (2021). https://doi.org/10.1134/S1560354721050014

  8. Thomson, W.: Floating magnets (illustrating vortex systems). Nature 18, 13–14 (1878)

    Article  Google Scholar 

  9. Thomson, J.J.: A Treatise on the Motion of Vortex Rings: An Essay to Which the Adams Prize was Adjudged in 1882, in the University of Cambridge, pp. 94–108. Macmillan, London (1883)

  10. Havelock, T.H.: The stability of motion of rectilinear vortices in ring formation. Philos. Mag. 11(70), 617–633 (1931)

    Article  MATH  Google Scholar 

  11. Kurakin, L.G., Yudovich, V.I.: The stability of stationary rotation of a regular vortex polygon. Chaos 12(3), 574–595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bogomolov, V.A.: Model of fluctuations of the centers of action of an atmosphere. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 15, 243 (1979)

    Google Scholar 

  13. Thomson, J.J.: XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Lond. Edinb. Dublin Philos. Mag. J. Sci. 7(39), 237–265 (1904)

  14. Kurakin, L.G.: On the nonlinear stability of regular vortex polygons and polyhedrons on a sphere. Dokl. Phys. 48(2), 84–89 (2003). https://doi.org/10.1134/1.1560737

    Article  MathSciNet  Google Scholar 

  15. Kurakin, L.G.: Influence of annular boundaries on Thomson’s vortex polygon stability. Chaos 24(2), 023105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdakova, N.N., Mamaev, I.S.: On the dynamics of point vortices in an annular region. Fluid Dyn. Res. 46(3), 031420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stewart, H.J.: Hydrodynamic problems arising from the investigation of the transverse circulation in the atmosphere. Bull. Am. Math. Soc. 51, 781–799 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morikawa, G.K., Swenson, E.V.: Interacting motion of rectilinear geostrophic vortices. Phys. Fluids 14(6), 1058–1073 (1971)

    Article  Google Scholar 

  19. Kurakin, L.G., Ostrovskaya, I.V.: On stability of Thomson’s vortex \({N}\)-gon in the geostrophic model of the point Bessel vortices. Regul. Chaotic Dyn. 22(7), 865–879 (2017). https://doi.org/10.1134/S1560354717070085

    Article  MathSciNet  MATH  Google Scholar 

  20. Bergmans, J., Kuvshinov, B.N., Lakhin, V.P., Schep, T.J.: Spectral stability of Alfven filament configurations. Phys. Plasmas 7(6), 2388–2403 (2000)

    Article  Google Scholar 

  21. Kurakin, L.G., Lysenko, I.A.: On the stability of the orbit and the invariant set of Thomson’s vortex polygon in a two-fluid plasma. Russ. J. Nonlinear Dyn. 22(7), 3–11 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Artemova, E., Kilin, A.: Nonlinear stability of regular vortex polygons in a Bose–Einstein condensate. Phys. Fluids 33(12), 127105 (2021). https://doi.org/10.1063/5.0070763

    Article  Google Scholar 

  23. Dritschel, D.G.: Ring configurations of point vortices in polar atmospheres. Regul. Chaotic Dyn. 26(5), 467–481 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reinaud, J.N.: Circular vortex arrays in generalised Euler’s and quasi-geostrophic dynamics. Regul. Chaotic Dyn. 27(3), 352–368 (2022). https://doi.org/10.1134/S1560354722030066

    Article  MathSciNet  MATH  Google Scholar 

  25. Kilin, A.A., Borisov, A.V., Mamaev, I.S.: The dynamics of point vortices inside and outside a circular domain. In: Borisov, A.V., Mamaev, I.S., Sokolovskiy, M.A. (eds.) Fundamental and Applied Problems in the Theory of Vortices, pp. 414–440. Institute of Computer Sciences, Moscow-Izhevsk (2003)

    Google Scholar 

  26. Kurakin, L.G.: Stability, resonances, and instability of the regular vortex polygons in the circular domain. Dokl. Phys. 49(11), 658–661 (2004). https://doi.org/10.1134/1.1831532

    Article  Google Scholar 

  27. Kurakin, L.G., Melekhov, A.P., Ostrovskaya, I.V.: A survey of the stability criteria of Thomson’s vortex polygons outside a circular domain. Bol. Soc. Mat. Mex. 22(2), 733–744 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kurakin, L., Ostrovskaya, I.: On the effects of circulation around a circle on the stability of a Thomson vortex \({N}\)-gon. Mathematics 8(6), 1033 (2020). https://doi.org/10.3390/math8061033

    Article  Google Scholar 

  29. Mamaev, I.S., Bizyaev, I.A.: Dynamics of an unbalanced circular foil and point vortices in an ideal fluid. Phys. Fluids 33(8), 087119 (2021)

    Article  Google Scholar 

  30. Ramodanov, S.M., Sokolov, S.V.: Dynamics of a circular cylinder and two point vortices in a perfect fluid. Regul. Chaotic Dyn. 26(6), 675–691 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bizyaev, I.A., Mamaev, I.S.: Qualitative analysis of the dynamics of a balanced circular foil and a vortex. Regul. Chaotic Dyn. 26(6), 658–674 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bizyaev, I.A., Mamaev, I.S.: Dynamics of a circular foil and two pairs of point vortices: new relative equilibria and a generalization of Helmholtz leapfrogging. Symmetry 15(3), 698 (2023)

    Article  Google Scholar 

  33. Bizyaev, I.A., Mamaev, I.S.: Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid. Bull. Udmurt Univ. Math. Mech. Comput. Sci. 30(4), 618–627 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Vetchanin, E.V., Mamaev, I.S.: Periodic perturbation of motion of an unbalanced circular foil in the presence of point vortices in an ideal fluid. Bull. Udmurt Univ. Math. Mech. Comput. Sci. 32(4), 630–643 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Kurakin, L.G., Ostrovskaya, I.V.: On the stability of the system of Thomson’s vortex \(n\)-gon and a moving circular cylinder. Russ. J. Nonlinear Dyn. 18(5), 915–926 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Ramodanov, S.M.: Motion of a circular cylinder and \({N}\) point vortices in a perfect fluid. Regul. Chaotic Dyn. 7(3), 291–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shashikanth, B.N., Marsden, J.E., Burdick, J.W., Kelly, S.D.: The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with \({N}\) point vortices. Phys. Fluids 14(3), 1214–1227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Borisov, A.V., Mamaev, I.S.: Integrability of the problem on motion of cylinder and vortex in the ideal fluid. Regul. Chaotic Dyn. 8(2), 163–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Borisov, A.V., Mamaev, I.S., Ramodanov, S.M.: Motion of a circular cylinder and \({N}\) point vortices in a perfect fluid. Regul. Chaotic Dyn. 8(4), 449–462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Borisov, A.V., Mamaev, I.S., Ramodanov, S.M.: Dynamics of a cylinder interacting with point vortices. In: Borisov, A.V., Mamaev, I.S. (eds.) Mathematical Methods in the Dynamics of Vortex Structures, pp. 286–307. Institute of Computer Sciences, Moscow-Izhevsk (2005)

    Google Scholar 

  41. Borisov, A.V., Mamaev, I.S., Ramodanov, S.M.: Dynamic interaction of point vortices and a two-dimensional cylinder. J. Math. Phys. 48(6), 065403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kurakin, L.G.: On the stability of the regular \(n\)-sided polygon of vortices. Dokl. Phys. 39(4), 284–286 (1994)

    MathSciNet  MATH  Google Scholar 

  43. Kurakin, L.G., Ostrovskaya, I.V.: Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain. Sib. Math. J. 51(3), 463–474 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kurakin, L.G., Ostrovskaya, I.V.: Nonlinear stability analysis of a regular vortex pentagon outside a circle. Regul. Chaotic Dyn. 17(5), 385–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank both reviewers for the useful comments. The work of the first author was carried out within the framework of the project no. FMWZ-2022-0001 of the State Task of the IWP RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kurakin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Explicit formulas characteristic polynomial \(\mathfrak {L}(\lambda )\)

Appendix: Explicit formulas characteristic polynomial \(\mathfrak {L}(\lambda )\)

Characteristic polynomial (18), (19) of matrix linearization (17) has the form

$$\begin{aligned}&\mathfrak {L}(\lambda )={\lambda ^2} (\lambda ^4+k_2 \lambda ^2+ k_0), \\&k_0 =32 k_{01}k_{02},\quad k_{01} = {\gamma }{b_2}^{2}+{a_1} {c_2},\quad k_{02} =2\,{\gamma } b_1^{2}+{a_1}({c_1}-{d_1}), \\&k_2 =-16\,{\gamma }\,{b_1}\,{b_2}-8\,{d_1}\,{c_2}+8\,{c_1}\,{c_2}+4a_1^{2} . \end{aligned}$$

Using formulas (16) we write coefficients of characteristic polynomial in explicit form as functions of the parameters qa and \(\gamma \)

$$\begin{aligned} k_{01}(q,a,\gamma )= & {} \Psi _{1} (q,\gamma ) + \frac{1}{a}\Psi _{2} (q,\gamma ) ,\nonumber \\ \Psi _{1} (q,\gamma )= & {} \frac{\left( 1-q \right) ^{2} \gamma }{16 \left( q +1\right) ^{2}}-\frac{\left( q^{2}+3\right) \left( 1-q \right) }{32 \left( q +1\right) ^{3}},\nonumber \\ \Psi _{2} (q,\gamma )= & {} \frac{\left( 4 q^{4}-9 q^{2}+2 q +3\right) \gamma }{16 \left( q +1\right) ^{2}}-\frac{\left( q^{2}+3\right) \left( 1-q \right) }{8(1+ q)}, \nonumber \\ k_{02}(q,a,\gamma )= & {} \Psi _{3}(q,\gamma ) + \frac{1}{a}\Psi _{4}(q,\gamma ) ,\nonumber \\ \Psi _3(q,\gamma )= & {} \frac{\gamma ^{2}}{2}+\frac{\left( 3 q^{3}-7 q^{2}+9 q -13\right) \gamma }{8 \left( q-1 \right) ^{2} \left( q +1\right) }+ \frac{\left( q^{2}+3\right) \left( q^{3}-5 q^{2}+3 q -7\right) }{16 \left( q +1\right) ^{2} \left( q-1\right) ^{3}},\nonumber \\ \Psi _4(q,\gamma )= & {} -\frac{\gamma ^{2}}{2}+\frac{\left( 4 q^{5}+4 q^{4}-9 q^{3}-3 q^{2}+q +11\right) \gamma }{8 \left( q-1 \right) ^{2} \left( q +1\right) }+\frac{\left( q +1\right) \left( q^{2}+3\right) }{4(q-1)},\nonumber \\ \end{aligned}$$
(A1)
$$\begin{aligned} k_2(q,a,\gamma )= & {} \Phi _{0}(q,\gamma ) +\frac{1}{a}\Phi _{1}(q,\gamma ) +\frac{1}{a^2}\Phi _{2}(q,\gamma ) ,\nonumber \\ \Phi _0(q,\gamma )= & {} \gamma ^{2}+\frac{\left( 2 q^{3}-2 q^{2}+6 q +2\right) \gamma }{\left( q +1\right) ^{2} \left( q-1 \right) }+\frac{q^{5}-3 q^{4}+10 q^{3}-6 q^{2}+13 q +1}{2 \left( q +1\right) ^{3} \left( q-1 \right) ^{2}},\nonumber \\ \Phi _1(q,\gamma )= & {} {-2 \gamma ^{2}+\frac{\left( 4 q^{4}-8 q^{3}-q^{2}+8 q -7\right) \gamma }{q^{2}-1}+\frac{2 q^{3}-6 q^{2}+2 q -6}{q +1}},\nonumber \\ \Phi _2(q,\gamma )= & {} \left( \gamma +2 q^{2} -2\right) ^{2}. \end{aligned}$$
(A2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurakin, L., Ostrovskaya, I. On the influence of circulation on the linear stability of a system of a moving cylinder and two identical parallel vortex filaments. Bol. Soc. Mat. Mex. 29, 79 (2023). https://doi.org/10.1007/s40590-023-00550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-023-00550-y

Keywords

Mathematics Subject Classification

Navigation