Skip to main content
Log in

On an inverse problem of the Bitsadze–Samarskii type for a parabolic equation of fractional order

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In this paper, for a fractional order equation with a fractional differentiation operator in the sense of Gerasimov–Caputo, we study a nonlocal problem of the Bitsadze–Samarskii type. To prove uniqueness and existence theorems for a regular solution to this problem, the spectral method is used. Spectral questions for the corresponding ordinary differential equation are investigated, eigenfunctions and associated functions are found, and their basis property is proved. For such equations, we study the adjoint problem too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: North-Holland Mathematics Studies. Theory and applications of fractional differential equations, Elsevier, Amsterdam (2006)

    Google Scholar 

  2. Carleman, T.: Sur la theorie des equations integrales et ses applications. Verhandlungen Int. Math. Kongr. 1, 138–151 (1932)

    MATH  Google Scholar 

  3. Vyshik, M.I.: On strongly elliptic system of differential equations. Mat. Sb. 29(2), 615–676 (1951)

    MathSciNet  Google Scholar 

  4. Browder, F.: Non-local elliptic boundary value problems. Am. J. Math. 86, 735–750 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bitsadze, A.V., Samarskii, A.A.: Some elementary generalizations of linear elliptic boundary value problems. Dokl. Akad. Nauk SSSR 185, 739–740 (1969)

    MathSciNet  Google Scholar 

  6. Skubachevskii, A.L.: Nonclassical boundary value problems. I. Sovrem. Mat. Fundam. Napravl 26, 199–334 (2007)

    MATH  Google Scholar 

  7. Skubachevskii, A.L.: Nonclassical boundary value problems. II. Sovrem. Mat. Fundam. Napravl 33, 3–179 (2009)

    MATH  Google Scholar 

  8. Ashyralyev, A., Tetikoglu, F.S.O.: A note on Bitsadze–Samarskii type nonlocal boundary value problems: well-posedness. Numer. Funct. Anal. Optim. 34, 939–975 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shamsi, H.A., Kadirkulov, B.J., Kerbal, S.: The Bitsadze–Samarskii type problem for mixed type equation in the domain with the deviation from the characteristics. Lobachevskii J. Math. 41, 1021–1030 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khubiev, K.U.: The Bitsadze–Samarskii problem for some characteristically loaded hyperbolic–parabolic equation. J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 23, 789–796 (2019)

  11. Karachik, V., Turmetov, B.: The Bitsadze–Samarskii problem for some characteristically loaded hyperbolic–parabolic equation. On solvability of some nonlocal boundary value problems for biharmonic equation. Math. Slov. 70, 329–342 (2020)

  12. Baderko, E.A., Cherepova, M.: Solution of the Bitsadze–Samarskii problem for a parabolic system in a semibounded domain. Differ. Equ. 53, 1294–1302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baderko, E.A., Cherepova, M.: Bitsadze–Samarskii problem for parabolic systems with Dini continuous coefficients. Complex Var. Elliptic Equ. 64, 753–765 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ionkin, N.I.: The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition. Differ. Uravn. 13, 294–304 (1977)

    MathSciNet  Google Scholar 

  15. Kasimov, S.G., Rakhmanov, F.D.: On a problem of the theory of heat conduction with non-local boundary conditions of the Samarskii-Ionkin type. In: Proceedings of the International Scientific Conference Differential Equations and Related Problems, pp. 64–69 (2013)

  16. Ashurov, R., Muhiddinova, O.: Inverse problem of determining the heat source density for the subdiffusion equation. Differ. Equ. 56, 1550–1563 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alimov, S.A., Ashurov, R.R.: On the backward problems in time for time-fractional subdiffusion equations. Fract. Differ. Calculus 11, 203–217 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirane, M., Sadybekov, M.A., Sarsenbi, A.A.: On an inverse problem of reconstructing a subdiffusion process from nonlocal data. Math. Methods Appl. Sci. 42, 43–52 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Turmetov, B.K., Kadirkulov, B.J.: On a problem for nonlocal mixed-type fractional order equation with degeneration. Chaos Solit. Fract. 146, 1–5 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Il’in, V.A.: Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators. Differ. Uravn. 22, 2059–2071 (1986)

    MathSciNet  Google Scholar 

  21. Naimark, M.A.: On some criteria for the completeness of a system of eigenvectors and associated vectors of a linear operator in a Hilbert space. Dokl. Math. 98, 727–730 (1954)

    Google Scholar 

  22. Dunford, N., Schwartz, J.T. (eds.): Linear Operators. Spectral Theory. Self-Adjoint Operators in Hilbert Space), p. 1063. Mir, Moscow (1966)

  23. Budaev, V.D.: Orthogonal and biorthogonal bases. In: Proceedings of the Russian State Pedagogical University named by A.I. Herzen, vol. 5, pp. 7–38 (2005)

  24. Kritskov, L.V., Sarsenbi, A.M.: Spectral properties of a nonlocal problem for a second-order differential equation with an involution. Differ. Equ. 51, 984–990 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bari, N.K.: Biorthogonal systems and bases in Hilbert space. Math. Uch. Zap. Mosk. Gos. Univ. 4, 69–107 (1951)

    MathSciNet  Google Scholar 

  26. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V. (eds.) Mittag–Leffler Functions, Related Topics and Applications, pp. 69–107. Springer, Berlin (2014)

  27. Boudabsa, L., Simon, T.: Some properties of the Kilbas–Saigō function. Mathematics 217, 24 (2021)

    Google Scholar 

  28. Ilyin, V.A., Poznyak, E.G. (eds.): Basics of Mathematical Analysis, p. 448. Mir, Moscow (1973)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed in this work.

Corresponding author

Correspondence to Ravshan Ashurov.

Ethics declarations

Conflict of interest

There are no competing interests concerning this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashurov, R., Kadirkulov, B. & Jalilov, M. On an inverse problem of the Bitsadze–Samarskii type for a parabolic equation of fractional order. Bol. Soc. Mat. Mex. 29, 70 (2023). https://doi.org/10.1007/s40590-023-00542-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-023-00542-y

Keywords

Mathematics Subject Classification

Navigation