Skip to main content
Log in

Weak periodic solutions of a parabolic–elliptic system with Joule–Thomson effect

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

This paper is concerned with the existence and the uniqueness of weak periodic solution for the following nonlinear parabolic–elliptic problem \(\frac{\partial u}{\partial t}-{\text {div}}({\mathcal {H}}(x,t,u,\nabla u))+\kappa (u)\beta ^{\prime }(u)\nabla u\nabla v=\kappa (u)|\nabla v|^{2}\) and \(\hbox {div}(\kappa (u)\nabla v)=0\) in Orlicz–Sobolev spaces, equipped with a specific N-functions. The proof is based on the theoretical frameworks of maximal monotonic maps and Schauder’s fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code Availability

Not applicable.

References

  1. Aberqi, A., Bennouna, J., Elmassoudi, M., Hammoumi, M.: Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte für Mathematik 189, 195–219 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aberqi, A., Bennouna, J., Elmassoudi, M.: Nonlinear elliptic equations with measure data in Orlicz spaces. Ukranian Math. J. 73(12), 1835–1864 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aberqi, A., Bennouna, J., Elmassoudi, M.: On some doubly nonlinear system in inhomogenous Orlicz spaces. Electron. J. Math. Anal. Appl. 6(1), 156–173 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  5. Ahakkoud, Y., Bennouna, J., Elmassoudi, M.: Existence of a renormalized solutions to a nonlinear system in Orlicz spaces. Filomat 36(15), 5073–5092 (2022)

    Article  MathSciNet  Google Scholar 

  6. Allegretto, W., Lin, Y., Ma, S.: Hölder continuous solutions of an obstacle thermistor problem. Discrete Contin. Dyn. Syst. Ser. B 4(4), 983–997 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Allegretto, W., Lin, Y., Ma, S.: On the time-periodic thermistor problem. Eur. J. Appl. Math. 15(1), 55–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antontsev, S.N., Chipot, M.: Existence, stability and blowup of the solution for the thermistor problem. Dokl. Akad. Nauk. 324(2), 309–313 (1992)

    MathSciNet  Google Scholar 

  9. Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25(4), 1128–1156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antontsev, S.N., Chipot, M.: Analysis of blowup for the thermistor problem. Sib. Math. J. 38(5), 827–841 (1997)

    Article  Google Scholar 

  11. Badii, M.: A generalized periodic thermistor model. Rend. Sem. Mat. Univ. Pol. Torino. 65, 3 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Badii, M.: Existence of periodic solutions for the thermistor problem with the Joule–Thomson effect. Ann. Univ. Ferrara 54, 1–10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Badii, M.: Periodic Solutions for a nonlinear Parabolic equation with nonlinear boundary conditions. Rend. Sem. Mat. Univ. Pol. Torino. 67(3), 341–349 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing Leyden, The Netherlands (1976)

    Book  MATH  Google Scholar 

  15. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and uniqueness of weak solution of \(p(x)\)- Laplacian in Sobolev spaces with variable exponents in complete manifolds. Filomat 35(5), 1453–1463 (2021)

    Article  MathSciNet  Google Scholar 

  16. Browder, F.E.: Nonlinear maximal monotone operators in Banach space. Math. Ann. 175, 89–113 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cimatti, G.: Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions. Q. Appl. Math. 47, 117–121 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cimatti, G.: Existence and uniqueness for the equation of the Joule–Thomson effect. Appl. Anal. 41, 131–144 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cimatti, G.: A remark on the thermistor problem with rapidly growing conductivity. Appl. Anal. 80, 133–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cimatti, G.: Stability and multiplicity of solutions for the thermistor problem. Ann. Mat. Pura Appl. 181(2), 181–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms and \(L^{1}\) data in Orlicz spaces. Port. Math. (N.S.) 62, 143–183 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Fang, F., Tan, Z.: Existence and multiplicity of solutions for a class of quasilinear elliptic equations: an Orlicz–Sobolev setting. J. Math. Anal. Appl. 389, 420–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krasnoselskii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, New York (1964)

    Google Scholar 

  24. Lieberman, G.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)

    Article  MATH  Google Scholar 

  25. Lions, J.L.: Quelques méthodes de résolution de problemes aux limites non-linéaires. Dunod Paris (1969)

  26. Mihǎilescu, M., Rǎdulescu, V.: Neumann problems associated to non-homogeneous differential operators in Orlicz–Sobolev spaces. Ann. Inst. Fourier 6, 2087–2111 (2008)

    Article  MATH  Google Scholar 

  27. Mihǎilescu, M., Repovš, D.: Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz–Sobolev spaces. Appl. Math. Comput. 217, 6624–6632 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Xu, X.: Existence and uniqueness for the nonstationary problem of the electrical heating of a conductor due to the Joule–Thomson effect. Int. J. Math. Math. Sci. 16, 125–138 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Our sincere gratitude goes to the reviewers for their valuable suggestions which contributed significantly to improving the quality of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to M. Elmassoudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate.

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahakkoud, Y., Bennouna, J. & Elmassoudi, M. Weak periodic solutions of a parabolic–elliptic system with Joule–Thomson effect. Bol. Soc. Mat. Mex. 29, 67 (2023). https://doi.org/10.1007/s40590-023-00539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-023-00539-7

Keywords

Mathematics Subject Classification

Navigation