Skip to main content
Log in

Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

The paper is devoted to the proof of a weak solution existence for the Kelvin–Voigt fluid motion model of an arbitrary finite order. First, for the model under consideration, using the Laplace transform, the stress tensor deviator is expressed from the rheological relation and substituted into the system of fluid motion equations. Then, for the resulting system of equations, an initial-boundary value problem is posed, a definition of a weak solution is given, and its existence is proved. For the proof, it is considered some problem approximating the original one and proved its solvability based on the Leray–Schauder theorem. Finally, based on a priori estimates of solutions, it is shown that the sequence of solutions for the approximation problem converges weakly to the solution of the original problem as the approximation parameter tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Inventiones mathematicae 158, 227–260 (2004). https://doi.org/10.1007/s00222-004-0367-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Berselli, L.C., Lewandowski, R., Nguyen, D.D.: Turbulent flows as generalized Kelvin-Voigt materials: Modeling and analysis. Nonlinear Analysis 196, Article number 111790 (2020). https://doi.org/10.1016/j.na.2020.111790

  3. Antontsev, S.N., de Oliveira, H.B., Khompysh, K.: Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids. Commun. Math. Sci. 17(7), 1915–1948 (2019). https://doi.org/10.4310/CMS.2019.v17.n7.a7

    Article  MathSciNet  MATH  Google Scholar 

  4. Antontsev, S.N., de Oliveira, H.B., Khompysh, K.: The classical Kelvin-Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity. Nonlinearity 34(5), 3083–3111 (2021). https://doi.org/10.1088/1361-6544/abe51e

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckenbach, E.F., Bellman, R.: Inequalities. Springer, Heidelberg (1961)

    Book  MATH  Google Scholar 

  6. Berselli, L.C., Kim, T.-Y., Rebholz, L.G.: Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete and Continuous Dynamical Systems - B 21(4), 1027–1050 (2016). https://doi.org/10.3934/dcdsb.2016.21.1027

    Article  MathSciNet  MATH  Google Scholar 

  7. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. Journal fur die reine und angewandte Mathematik 616, 15–46 (2008). https://doi.org/10.1515/CRELLE.2008.016

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Plinio, F., Giorgini, A., Pata, V., Temam, R.: Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity. J. Nonlinear Sci. 28, 653–686 (2018). https://doi.org/10.1007/s00332-017-9422-1

    Article  MathSciNet  MATH  Google Scholar 

  9. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Inventiones mathematicae 98, 511–547 (1989). https://doi.org/10.1007/BF01393835

    Article  MathSciNet  MATH  Google Scholar 

  10. Edwards, C.H.: Advanced Calculus of Several Variables. Academis Press, New York and London (1973)

    MATH  Google Scholar 

  11. Fursikov, A.V.: Optimal Control of Distributed Systems. Theory and Applications vol. 187. American Mathematical Society, Providence (2000)

  12. Gajewski, H., Groger, K., Zacharias, K.: Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Mathematische Nachrichten 67(22), 337–341 (1975). https://doi.org/10.1002/mana.19750672207

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalantarov, V.K., Levant, B., Titi, E.S.: Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci. 19, 133–152 (2009). https://doi.org/10.1007/s00332-008-9029-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalantarov, V.K., Titi, E.S.: Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. Chin. Ann. Math. Ser. B 30(6), 697–714 (2009). https://doi.org/10.1007/s11401-009-0205-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalantarov, V.K., Titi, E.S.: Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers. Discrete Continuous Dyn. Syst. B 23(3), 1325–1345 (2018). https://doi.org/10.3934/dcdsb.2018153

    Article  MathSciNet  MATH  Google Scholar 

  16. Karazeeva, N.Z., Cotsiolis, A.A., Oskolkov, A.P.: Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids. Proc. Steklov Inst. Math. 188, 73–108 (1991)

    MATH  Google Scholar 

  17. Mohan, M.T.: Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with fading memory. Evolution Equations and Control Theory 11(1), 125–167 (2022). https://doi.org/10.3934/eect.2020105

    Article  MathSciNet  MATH  Google Scholar 

  18. Mohan, M.T.: On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evol. Equ. Control Theory 9(2), 301–339 (2020). https://doi.org/10.3934/eect.2020007

    Article  MathSciNet  MATH  Google Scholar 

  19. Orlov, V.P., Parshin, M.I.: On a problem in the dynamics of a thermoviscoelastic medium with memory. Comput. Math. Math. Phys. 55(4), 650–665 (2015). https://doi.org/10.1134/S0965542515010170

    Article  MathSciNet  MATH  Google Scholar 

  20. Orlov, V.P., Sobolevskii, P.E.: On the mathematical models of a viscoelasticity with a memory. Differ. Integral Equ. 4(1), 103–115 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Oskolkov, A.P.: Theory of nonstationary flows of Kelvin-voigt fluids. J. Math. Sci. 28, 751–758 (1985). https://doi.org/10.1007/BF02112340

    Article  MATH  Google Scholar 

  22. Oskolkov, A.P.: Initial-boundary value problems for equations of motion of Kelvin-Voight fluids and Oldroyd fluids. Proc. Steklov Inst. Math. 179, 137–182 (1989)

    MATH  Google Scholar 

  23. Simon, J.: Compact sets in the space \(L_p(0, T; B)\). Annali di Matematica pura ed applicata 146, 65–96 (1986). https://doi.org/10.1007/BF01762360

    Article  Google Scholar 

  24. Turbin, M.V.: Research of a mathematical model of low-concentrated aqueous polymer solutions. Abstract and Applied Analysis 2006, Article number 012497 (2006). https://doi.org/10.1155/AAA/2006/12497

  25. Turbin, M., Ustiuzhaninova, A.: Pullback attractors for weak solution to modified Kelvin-Voigt model. Evol. Equ. Control Theory 11(6), 2055–2072 (2022). https://doi.org/10.3934/eect.2022011

    Article  MathSciNet  MATH  Google Scholar 

  26. Turbin, M.V., Ustiuzhaninova, A.S.: The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions. Russian Math. 63(8), 54–69 (2019). https://doi.org/10.3103/S1066369X19080061

    Article  MathSciNet  MATH  Google Scholar 

  27. Ustiuzhaninova, A., Turbin, M.: Feedback control problem for modified Kelvin-Voigt model. J. Dyn. Control Syst. 28(3), 465–480 (2022). https://doi.org/10.1007/s10883-021-09539-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Vinogradov, G.V., Malkin, A.Y.: Rheology of Polymers: Viscoelasticity and Flow of Polymers. Springer, Heidelberg (1980)

    Book  Google Scholar 

  29. Zvyagin, V.G., Dmitrienko, V.T.: On weak solutions of a regularized model of a viscoelastic fluid. Differ. Equ. 38(12), 1731–1744 (2002). https://doi.org/10.1023/A:1023860129831

    Article  MathSciNet  MATH  Google Scholar 

  30. Zvyagin, V.G., Orlov, V.P.: Solvability of one non-Newtonian fluid dynamics model with memory. Nonlinear Anal. 172, 73–98 (2018). https://doi.org/10.1016/j.na.2018.02.012

    Article  MathSciNet  MATH  Google Scholar 

  31. Zvyagin, V., Orlov, V.: Weak solvability of fractional Voigt model of viscoelasticity. Discrete Continuous Dyn. Syst. 38(12), 6327–6350 (2018). https://doi.org/10.3934/dcds.2018270

    Article  MathSciNet  MATH  Google Scholar 

  32. Zvyagin, V.G., Turbin, M.V.: Mathematical Problems in Viscoelastic Hydrodynamics. Krasand URSS, Moscow (2012). ((in Russian))

  33. Zvyagin, V., Turbin, M.: Optimal feedback control problem for inhomogeneous Voigt fluid motion model. Journal of Fixed Point Theory and Applications 23, Article number 4 (2021). https://doi.org/10.1007/s11784-020-00838-w

  34. Zvyagin, V.G., Turbin, M.V.: The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids. J. Math. Sci. 168, 157–308 (2010). https://doi.org/10.1007/s10958-010-9981-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Science Foundation, grant No 23-21-00091, https://rscf.ru/project/23-21-00091/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Turbin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turbin, M., Ustiuzhaninova, A. Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model. Bol. Soc. Mat. Mex. 29, 54 (2023). https://doi.org/10.1007/s40590-023-00526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-023-00526-y

Keywords

Mathematics Subject Classification

Navigation