Skip to main content

Advertisement

Log in

Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease

  • Virology (A Nicola, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Nearly every human is persistently infected with one of three alphaherpesviruses: herpes simplex virus-1, herpes simplex virus-2, and varicella zoster virus. Infection elicits diseases ranging from epithelial lesions to viral encephalitis. Recurrent alphaherpesvirus-associated diseases result from transmission of infection from neurons. The number of viruses that productively infects a cell defines an important property known as the multiplicity of cellular infection (MOCI). The rates at which alphaherpesviruses replicate within cells, spread infection between cells, and elicit recurrent diseases are directly impacted by the MOCI.

Recent Findings

Several studies have quantified the MOCI during alphaherpesvirus infection. There is evidence that two limiting factors impact various aspects of alphaherpesvirus MOCI and directly affect pathogenesis. Those limitations include a limit on the number of viral genomes that can replicate within a host cell and a limit on cellular superinfection.

Summary

This review will detail what is known about the limitations that affect MOCI and how it shapes alphaherpesvirus spread and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Xu F, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA. 2006;296:964–73.

    Article  CAS  PubMed  Google Scholar 

  2. Gershon AA, Chen J, Gershon MD. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis. 2008;197:S61–5.

    Article  PubMed  Google Scholar 

  3. Knipe, D. M. & Howley, P. M. Fields virology. (Lippincott Williams & Wilkins, 2007).

  4. Lafferty WE, et al. Recurrences after oral and genital herpes simplex virus infection. N Engl J Med. 1987;316:1444–9.

    Article  CAS  PubMed  Google Scholar 

  5. Arvin AM. Varicella-zoster virus. (1996);9:361–381 .

  6. Tsatsos M, et al. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol. 2016;44:824–37.

    Article  PubMed  Google Scholar 

  7. Kaewpoowat Q, Salazar L, Aguilera E, Wootton SH, Hasbun R. Herpes simplex and varicella zoster CNS infections: clinical presentations, treatments and outcomes. Infection. 2015;44:337–45.

    Article  PubMed  Google Scholar 

  8. McGrath N, Anderson NE, Croxson MC, Powell KF. Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry. 1997;63:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitley RJ. Herpes simplex encephalitis: adolescents and adults. Antivir Res. 2006;71:141–8.

    Article  CAS  PubMed  Google Scholar 

  10. Koelle DM, Corey L. Herpes simplex: insights on pathogenesis and possible vaccines. Annu Rev Med. 2008;59:381–95.

    Article  CAS  PubMed  Google Scholar 

  11. Vázquez M, et al. Effectiveness over time of varicella vaccine. JAMA. 2004;291:851–5.

    Article  PubMed  Google Scholar 

  12. Oxman MN, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med. 2005;352:2271–84.

    Article  CAS  PubMed  Google Scholar 

  13. Enquist LW, Leib DA. Intrinsic and innate defenses of neurons: Détente with the herpesviruses. J Virol. 2017;91:e01200–16.

    Article  CAS  PubMed  Google Scholar 

  14. Kinchington PR, Leger AJS, Guedon J-MG, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. Herpesviridae. 2012;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Gutiérrez S, Michalakis Y, Blanc S. Virus population bottlenecks during within-host progression and host-to-host transmission. Curr Opin Virol. 2012;2:546–55. An excellent review of concepts of MOCI as discussed within context of plant viruses

    Article  PubMed  Google Scholar 

  16. • Sanjuán R. Collective infectious units in viruses. Trends Microbiol. 2017;25:1–11. An intriguing article debating the nature of the infectious unit that is transferred between cells during viral infection

    Article  Google Scholar 

  17. Flint SJ. American Society for Microbiology. Principles Virol. 2:(xxii–569– 419 p.) (ASM Press, 2009).

  18. Watson DH, WILDY P, Russell WC. Quantitative electron microscope studies on the growth of herpes virus using the techniques of negative staining and ultramicrotomy. Virology. 1964;24:523–38.

    Article  CAS  PubMed  Google Scholar 

  19. Carpenter JE, Henderson EP, Grose C. Enumeration of an extremely high particle-to-PFU ratio for varicella-zoster virus. J Virol. 2009;83:6917–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cunningham AL, et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 2006;194:S11–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kramer T, Enquist LW. Directional spread of alphaherpesviruses in the nervous system. Viruses. 2013;5:678–707.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goodpasture EW, Teague O. The transmission of the virus of herpes febrilis along sensory nerves with resulting unilateral lesions in the central nervous system in the rabbit. Exp Biol Med. 1923;20:545–7.

    Article  Google Scholar 

  23. Cohrs RJ, Gilden DH. Human herpesvirus latency. Brain Pathol. 2006;11:465–74.

    Article  Google Scholar 

  24. Cohrs RJ, et al. Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol. 2000;74:11464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagner EK Bloom DC Experimental investigation of herpes simplex virus latency. (1997);10:419–443.

  26. Pires de Mello CP, de Mello CPP, Bloom DC, Paixão IC. Herpes simplex virus type-1: replication, latency, reactivation and its antiviral targets. Antivir Ther. 2016;21:277–86.

    Article  PubMed  Google Scholar 

  27. Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PG. Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neuro-Oncol. 2009;

  28. Sawtell NM, Thompson RL. Comparison of herpes simplex virus reactivation in ganglia in vivo and in explants demonstrates quantitative and qualitative differences. J Virol. 2004;78:7784–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson D, Connor V, Nicoll MP, Efstathiou S, Proenca JT. Analyses of herpes simplex virus type 1 latency and reactivation at the single cell level using fluorescent reporter mice. J Gen Virol. 2016;97:767–77.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cohrs RJ, Barbour M, Gilden DH. Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol. 1996;70:2789–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kratchmarov R, Taylor MP, Enquist LW. Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol. 2012;22:378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilden, D., Nagel, M., Cohrs, R., Mahalingam, R. & Baird, N. Varicella zoster virus in the nervous system. F1000Res. (2015);4.

  33. Taylor MP Enquist LW Axonal spread of neuroinvasive viral infections. (2015).

  34. Ribrault C, Sekimoto K, Triller A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci. 2011;12:375–87.

    Article  CAS  PubMed  Google Scholar 

  35. • Cohen EM, Kobiler O. Gene expression correlates with the number of herpes viral genomes initiating infection in single cells. PLoS Pathog. 2016;12:e1006082. The findings described in this paper are important in understanding the effects of the multiplicity of cellular infection on viral gene expression

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Koyuncu OO, Song R, Greco TM, Cristea IM, Enquist LW. The number of alphaherpesvirus particles infecting axons and the axonal protein repertoire determines the outcome of neuronal infection. MBio. 2015;6:e00276–15. Established a strong correlation between the number of viral particles infecting a cell to decisions between productive and quiescent infection. Identified that the number of viral particles infecting a given neuron influences latency

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hafezi W, et al. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog. 2012;8:e1002679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson AC, Mohr I. A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol. 2012;20:604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Markus A, Lebenthal-Loinger I, Yang IH, Kinchington PR, Goldstein RS. An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog. 2015;11:e1004885.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hoshino Y, Pesnicak L, Cohen JI, Straus SE. Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J Virol. 2007;81:8157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoshino Y, Qin J, Follmann D, Cohen JI, Straus SE. The number of herpes simplex virus-infected neurons and the number of viral genome copies per neuron correlate with the latent viral load in ganglia. Virology. 2008;372:56–63.

    Article  CAS  PubMed  Google Scholar 

  42. Sawtell, N. M. Comprehensive quantification of herpes simplex virus latency at the single-cell level. 71, 5423–5431 (1997).

  43. Cohrs RJ, et al. Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol. 2000;74:11464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pevenstein SR, Williams RK McChesney D. Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. (1999);73:10514–10518.

  45. Sawtell NM, Poon DK, Tansky CS, Thompson RL. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol. 1998;72:5343–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Quinlivan MA, et al. Vaccine Oka varicella-zoster virus genotypes are monomorphic in single vesicles and polymorphic in respiratory tract secretions. J Infect Dis. 2006;193:927–30.

    Article  CAS  PubMed  Google Scholar 

  47. Taylor MP, Kobiler O, Enquist LW. Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proc Natl Acad Sci. 2012;109:17046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagner EK, Bloom DC. Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev. 1997;10:419–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Depledge DP, et al. Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol Biol Evol. 2014;31:397–409.

    Article  CAS  PubMed  Google Scholar 

  50. Taylor TJ, McNamee EE, Day C Knipe DM. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. (2003);309:232–247.

  51. Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun. 2010;1:146–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kobiler O, Brodersen P, Taylor MP, Ludmir EB, Enquist LW. Herpesvirus replication compartments originate with single incoming viral genomes. MBio. 2011;2:e00278–11.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Everett RD, Sourvinos G, Leiper C, Clements JB, Orr A. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol. 2004;78:1903–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shapira L, Ralph M, Tomer E, Cohen S, Kobiler O. Histone deacetylase inhibitors reduce the number of herpes simplex virus-1 genomes initiating expression in individual cells. Front Microbiol. 2016;7:1970.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maul GG, et al. Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology. 1996;217:67–75.

    Article  CAS  PubMed  Google Scholar 

  56. Campadelli-Fiume G, et al. Glycoprotein D of herpes simplex virus encodes a domain which precludes penetration of cells expressing the glycoprotein by superinfecting herpes simplex virus. J Virol. 1990;64:6070–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Laliberte JP, Moss B. A novel mode of poxvirus superinfection exclusion that prevents fusion of the lipid bilayers of viral and cellular membranes. J Virol. 2014;88:9751–68.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Folimonova SY. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol. 2012;86:5554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson RM, Spear PG. Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. J Virol. 1989;63:819–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Scanlan PM, Tiwari V, Bommireddy S, Shukla D. Cellular expression of gH confers resistance to herpes simplex virus type-1 entry. Virology. 2003;312:14–24.

    Article  CAS  PubMed  Google Scholar 

  61. Mador N, Panet A, Steiner I. The latency-associated gene of herpes simplex virus type 1 (HSV-1) interferes with superinfection by HSV-1. J Neuro-Oncol. 2002;8(Suppl 2):97–102.

    CAS  Google Scholar 

  62. Huang T, Campadelli-Fiume G. Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis. Proc Natl Acad Sci U S A. 1996;93:1836–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campadelli-Fiume G, Arsenakis M, Farabegoli F, Roizman B. Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. J Virol. 1988;62:159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Spear PG, Longnecker R. Herpesvirus entry: an update. J Virol. 2003;77:10179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stiles KM, Milne RSB, Cohen GH, Eisenberg RJ, Krummenacher C. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D. Virology. 2008;373:98–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li Q, Ali MA, Cohen JI. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell. 2006;127:305–16.

    Article  CAS  PubMed  Google Scholar 

  67. Heldwein EE. gH/gL supercomplexes at early stages of herpesvirus entry. Curr Opin Virol. 2016;18:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rovnak J, Kennedy PGE, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation. J. Gen. Virol. 2015;96:1581–602.

    Article  PubMed  PubMed Central  Google Scholar 

  69. • Criddle A, Thornburg T, Kochetkova I, DePartee M, Taylor MP. gD-independent superinfection exclusion of alphaherpesviruses. J Virol. 2016;90:4049–58. Characterized the timing of an early mechanism of superinfection exclusion for HSV-1. Observed that early SIE is gD-independent and correlates with limitations to neuronal spread of infection

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Banfield BW, Kaufman JD, Randall JA, Pickard GE. Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J Virol. 2003;77:10106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szpara ML, et al. Evolution and diversity in human herpes simplex virus genomes. J Virol. 2013;88:1209–27.

    Article  PubMed  Google Scholar 

  72. Bowden R, Sakaoka H, Donnelly P, Ward R. High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. Infect Genet Evol. 2004;4:115–23.

    Article  CAS  PubMed  Google Scholar 

  73. Jaramillo N, Domingo E, Muñoz-Egea MC, Tabarés E, Gadea I. Evidence of Muller's ratchet in herpes simplex virus type 1. J Gen Virol. 2013;94:366–75.

    Article  CAS  PubMed  Google Scholar 

  74. Muller HJ. The relation of recombination to mutational advance. Mutat Res. 1964;106:2–9.

    Article  CAS  PubMed  Google Scholar 

  75. Norberg P, et al. Recombination of globally circulating varicella zoster virus. J Virol. 2015;89:7133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Glorioso JC, Fink DJ. Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu Rev Microbiol. 2004;58:253–71.

    Article  CAS  PubMed  Google Scholar 

  77. Goins WF, Huang S, Cohen JB, Glorioso JC. Engineering HSV-1 vectors for gene therapy. Methods Mol Biol. 2014;1144:63–79.

    Article  CAS  PubMed  Google Scholar 

  78. Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy. 2015;7:611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chayavichitsilp P, Buckwalter JV, Krakowski AC, Friedlander SF. Herpes simplex. Pediatr Rev. 2009;30:119–29– quiz 130.

    Article  PubMed  Google Scholar 

  80. Proenca JT, et al. An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurons. J Gen Virol. 2011;92:2575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Bertke AS, et al. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro. J Virol. 2011;85:6669–77. Recombination occurs between human alphaherpesviruses. Therefore, multiple alphaherpesviruses must infect the same cell or neuron within the host

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koelle DM, et al. Worldwide circulation of HSV-2 × HSV-1 recombinant strains. Sci Rep. 2017;7:44084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sloutskin A, Yee MB, Kinchington PR, Goldstein RS. Varicella-zoster virus and herpes simplex virus 1 can infect and replicate in the same neurons whether co- or superinfected. J Virol. 2014;88:5079–86.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Geraghty RJ, et al. Cellular expression of Alphaherpesvirus gD interferes with entry of homologous and heterologous alphaherpesviruses by blocking access to a shared gD receptor. Virology. 2000;268:147–58.

    Article  CAS  PubMed  Google Scholar 

  85. Dasika GK, Letchworth GJ. Homologous and heterologous interference requires bovine herpesvirus-1 glycoprotein D at the cell surface during virus entry. J Gen Virol. 2000;81:1041–9.

    Article  CAS  PubMed  Google Scholar 

  86. Deka S, et al. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol. 2006;8:149–62.

    Article  CAS  PubMed  Google Scholar 

  87. Hall JV, et al. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development. Front Cell Infect Microbiol. 2014;4:158.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Slade J, Hall JV, Kintner J, Schoborg RV. Chlamydial pre-infection protects from subsequent herpes simplex virus-2 challenge in a murine vaginal super-infection model. PLoS One. 2016;11:e0146186.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Slade JA, Hall JV, Kintner J, Phillips-Campbell R, Schoborg RV. Host nectin-1 promotes chlamydial infection in the female mouse genital tract, but is not required for infection in a novel male murine rectal infection model. PLoS One. 2016;11:e0160511.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Johnson DC, Huber MT. Directed egress of animal viruses promotes cell-to-cell spread. J Virol. 2002;76:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. González-Jara P, Fraile A, Canto T, García-Arenal F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J Virol. 2009;83:7487–94.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Felts RL, et al. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci. 2010;107:13336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen Y-H, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell. 2015;160:619–30.

    Article  CAS  PubMed  Google Scholar 

  94. Gutiérrez S, et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 2010;6:e1001113.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bull JJ, Meyers LA, Lachmann M. Quasispecies made simple. PLoS Comp Biol. 2005;1:e61.

    Article  CAS  Google Scholar 

  97. Thiry E, et al. Recombination in alphaherpesviruses. Rev Med Virol. 2005;15:89–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Taylor.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Virology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herr, A.E., Hain, K.S. & Taylor, M.P. Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease. Curr Clin Micro Rpt 4, 167–174 (2017). https://doi.org/10.1007/s40588-017-0071-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0071-9

Keywords

Navigation