Skip to main content
Log in

Factorizations in self-idealizations of PIRs and UFRs

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

The self-idealization of a commutative ring R is isomorphic to the ring \(R[x]/(x^2)\) or, equivalently, the ring of upper-triangular Toeplitz matrices \({{\mathrm{\mathcal {T}}}}(R)=\left\{ \left( \begin{matrix} a &{} b \\ 0 &{} a \end{matrix}\right) :a,b\in R\right\} \). Recently, Chang and Smertnig characterized the sets of lengths of factorizations in \({{\mathrm{\mathcal {T}}}}(D)\) where D is a principal ideal domain. In this work, in addition to correcting an error in their paper, we extend the study to \({{\mathrm{\mathcal {T}}}}(R)\) when R is either a principal ideal ring or a unique factorization ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A\(\bar{\rm g}\)argün, A.G., Anderson, D.D., Valdez-Leon, S.: Factorization in commutative rings with zero divisors. III. Rocky Mt. J. Math. 31(1), 1–21 (2001)

  2. Anderson, D.D., Axtell, M., Forman, S., Stickles, J.: When are associates unit multiples? Rocky Mt. J. Math. 34(3), 811–828 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1(1), 3–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, D.D., Valdes-Leon, S.: Factorization in commutative rings with zero divisors. Rocky Mt. J. Math. 26(2), 439–480 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, D.D., Valdes-Leon, S.: Factorization in commutative rings with zero divisors. II. Factorization in integral domains (Iowa City, IA, 1996), Lecture Notes in Pure and Appl. Math., vol. 189, pp. 197–219. Dekker, New York (1997)

  6. Bachman, D., Baeth, N., McQueen, A.: Factorizations of upper triangular Toeplitz matrices. Bollettino dell’Unione Matematica Italiana 8, 131–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baeth, N., Burns, B., Mixco, J.: A fundamental theorem of modular arithmetic (2016, preprint)

  8. Bouvier, A.: Structure des anneaux à factorisation unique. Pub. Dépt. Math. Lyon 11, 39–49 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Chang, G., Smertnig, D.: Factorization in the self-idealization of a PID. Boll. Unione Mat. Ital. (9) 6(2), 363–377 (2013)

  10. Chang, G.: Some examples of weakly factorial rings. Korean J. Math. 21(3), 319–323 (2013)

    Article  Google Scholar 

  11. Geroldinger, A., Halter-Koch, F.: Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278. Chapman & Hall/CRC (2006)

  12. Grenander, U., Szegö, G.: Toeplitz forms and their applications, California Monographs in Mathematical Sciences. vol. 321. University of California Press (1958)

  13. Zariski, O., Samuel, P.: Commutative Algebra, vol. I. Van Nostrand, Princeton (1958)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. Baeth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axtell, M., Baeth, N.R. & Stickles, J. Factorizations in self-idealizations of PIRs and UFRs. Boll Unione Mat Ital 10, 649–670 (2017). https://doi.org/10.1007/s40574-016-0107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-016-0107-8

Keywords

Navigation