Skip to main content

Advertisement

Log in

A State-of-the-Science Review on Metal Biomarkers

  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses.

Recent Findings

We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window.

Summary

As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

As the manuscript is a narrative review, no data analysis was conducted and therefore, a data availability statement likely does not apply to this manuscript.

References 

  1. National Institute of Environmental Health Sciences. Human Health Exposure Analysis Resource (HHEAR). Available from. https://hhearprogram.org.

  2. Gibson EA, Goldsmith J, Kioumourtzoglou MA. Complex Mixtures, complex analyses: an emphasis on interpretable results. Curr Environ Health Rep. 2019;6(2):53–61. https://doi.org/10.1007/s40572-019-00229-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellavia A, James-Todd T, Williams PL. Approaches for incorporating environmental mixtures as mediators in mediation analysis. Environ Int. 2019;123:368–74. https://doi.org/10.1016/j.envint.2018.12.024.

    Article  PubMed  Google Scholar 

  4. Tanner E, Lee A, Colicino E. Environmental mixtures and children’s health: identifying appropriate statistical approaches. Curr Opin Pediatr. 2020;32(2):315–20. https://doi.org/10.1097/mop.0000000000000877.

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. Ten chemicals of major public health concern: World Health Organization; [updated June 1, 2020; cited 2020]. Available from: https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern.

  6. Tellez-Plaza M, Guallar E, Navas-Acien A. Environmental metals and cardiovascular disease. BMJ. 2018;362:k3435. https://doi.org/10.1136/bmj.k3435.

    Article  PubMed  Google Scholar 

  7. Orr SE, Bridges CC. Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci. 2017;18(5). https://doi.org/10.3390/ijms18051039

  8. Scammell MK, Sennett CM, Petropoulos ZE, Kamal J, Kaufman JS. Environmental and occupational exposures in kidney disease. Semin Nephrol. 2019;39(3):230–43. https://doi.org/10.1016/j.semnephrol.2019.02.001.

    Article  CAS  PubMed  Google Scholar 

  9. Stammler L, Uhl A, Mayer B, Keller F. Renal effects and carcinogenicity of occupational exposure to uranium: a meta-analysis. Nephron Extrz. 2016;6(1):1–11. https://doi.org/10.1159/000442827.

    Article  Google Scholar 

  10. Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59:537–54. https://doi.org/10.1146/annurev-pharmtox-010818-021031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. White AJ, O’Brien KM, Niehoff NM, Carroll R, Sandler DP. Metallic air pollutants and breast cancer risk in a nationwide cohort study. Epidemiology. 2019;30(1):20–8. https://doi.org/10.1097/ede.0000000000000917.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang S, Kuang J, Zhou F, Jia Q, Lu Q, Feng C, et al. The association between prenatal cadmium exposure and birth weight: a systematic review and meta-analysis of available evidence. Environ Pollut. 2019;251:699–707. https://doi.org/10.1016/j.envpol.2019.05.039.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SS, Meeker JD, Carroll R, Zhao S, Mourgas MJ, Richards MJ, et al. Urinary trace metals individually and in mixtures in association with preterm birth. Environ Int. 2018;121(Pt 1):582–90. https://doi.org/10.1016/j.envint.2018.09.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Claus Henn B, Ettinger AS, Hopkins MR, Jim R, Amarasiriwardena C, Christiani DC, et al. Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related superfund site. Environ Health Persp. 2016;124(8):1308–15. https://doi.org/10.1289/ehp.1510070.

    Article  CAS  Google Scholar 

  15. Shah-Kulkarni S, Lee S, Jeong KS, Hong YC, Park H, Ha M, et al. Prenatal exposure to mixtures of heavy metals and neurodevelopment in infants at 6 months. Environ Res. 2020;182:109122. https://doi.org/10.1016/j.envres.2020.109122.

    Article  CAS  PubMed  Google Scholar 

  16. Nishijo M, Nakagawa H, Suwazono Y, Nogawa K, Kido T. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan. BMJ Open. 2017;7(7):e015694. https://doi.org/10.1136/bmjopen-2016-015694.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16(3):493–508. https://doi.org/10.1093/biostatistics/kxu058.

    Article  PubMed  Google Scholar 

  18. Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat. 2015;20(1):100–20. https://doi.org/10.1007/s13253-014-0180-3.

    Article  PubMed  Google Scholar 

  19. Chou CHSJ, Harper C. Toxicological profile for arsenic. Report. Agency for toxic substances and disease registry, 2007. 

  20. Navas-Acien A, Tellez-Plaza M. Metals and health: science and practice. In: Boulton ML, Wallace RB, editors. Maxcy-Rosenau-Last public health & preventive medicine, 16e. New York, NY: McGraw Hill; 2022.

  21. Wedepohl KH. The composition of the upper earth's crust and the natural cycle of selected metals resources. Wedepohl, KH; 1984. Report No.: BIOSIS/86/36491.

  22. Carey A-M, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, et al. Grain unloading of arsenic species in rice. Plant Physiol. 2009;152(1):309–19. https://doi.org/10.1104/pp.109.146126.

    Article  CAS  PubMed  Google Scholar 

  23. Adriano DC. Arsenic. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. New York, NY: Springer, New York; 2001. p. 219–61.

    Google Scholar 

  24. Bencko V, Foong FYL. The history of arsenical pesticides and health risks related to the use of Agent Blue. Ann Agric Environ Med. 2017;24(2):312–6. https://doi.org/10.26444/aaem/74715.

    Article  CAS  PubMed  Google Scholar 

  25. Garbarino JR, Bednar AJ, Rutherford DW, Beyer RS, Wershaw RL. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environ Sci Technol. 2003;37(8):1509–14. https://doi.org/10.1021/es026219q.

    Article  CAS  PubMed  Google Scholar 

  26. Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 1988;333(6169):134–9. https://doi.org/10.1038/333134a0.

    Article  CAS  PubMed  Google Scholar 

  27. Pacyna JM, Scholtz MT, Li Y-F. Global budget of trace metal sources. Environ Rev. 1995;3(2):145–59. https://doi.org/10.1139/a95-006.

    Article  CAS  Google Scholar 

  28. Francis CW, White GH. Leaching of toxic metals from incinerator ashes. J Water Pollut Control Fed. 1987;59(11):979–86.

    CAS  Google Scholar 

  29. Wadge A, Hutton M. The leachability and chemical speciation of selected trace elements in fly ash from coal combustion and refuse incineration. Environ Pollut. 1987;48(2):85–99. https://doi.org/10.1016/0269-7491(87)90089-3.

    Article  CAS  PubMed  Google Scholar 

  30. Argos M, Ahsan H, Graziano JH. Arsenic and human health: epidemiologic progress and public health implications. Rev Environ Health. 2012;27(4):191–5. https://doi.org/10.1515/reveh-2012-0021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chung J-Y, Yu S-D, Hong Y-S. Environmental source of arsenic exposure. J Prev Med Public Health. 2014;47(5):253–7. https://doi.org/10.3961/jpmph.14.036.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zheng Y. Global solutions to a silent poison. Science. 2020;368(6493):818–9. https://doi.org/10.1126/science.abb9746.

    Article  CAS  PubMed  Google Scholar 

  33. Sobel MH, Sanchez TR, Jones MR, Kaufman JD, Francesconi KA, Blaha MJ, et al. Rice intake, arsenic exposure, and subclinical cardiovascular disease among US adults in MESA. J Am Heart Assoc. 2020;9(4):e015658. https://doi.org/10.1161/JAHA.119.015658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR. Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Persp. 2012;120(10):1418–24. https://doi.org/10.1289/ehp.1205014.

    Article  CAS  Google Scholar 

  35. Xue J, Zartarian V, Wang S-W, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ Health Persp. 2010;118(3):345–50. https://doi.org/10.1289/ehp.0901205.

    Article  CAS  Google Scholar 

  36. Davis MA, Signes-Pastor AJ, Argos M, Slaughter F, Pendergrast C, Punshon T, et al. Assessment of human dietary exposure to arsenic through rice. Sci Total Environ. 2017;586:1237–44. https://doi.org/10.1016/j.scitotenv.2017.02.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang W, Wang W-X, Zhang L. Comparison of bioavailability and biotransformation of inorganic and organic arsenic to two marine fish. Environ Sci Technol. 2016;50(5):2413–23. https://doi.org/10.1021/acs.est.5b06307.

    Article  CAS  PubMed  Google Scholar 

  38. Nigra Anne E, Nachman Keeve E, Love David C, Grau-Perez M, Navas-Acien A. Poultry consumption and arsenic exposure in the U.S. population. Environ Health Persp. 2017;125(3):370–7. https://doi.org/10.1289/EHP351.

    Article  CAS  Google Scholar 

  39. Food and Drug Administration (FDA). Arsenic-based animal drugs and poultry [updated 04/30/2021]. Available from: https://www.fda.gov/animal-veterinary/product-safety-information/arsenic-based-animal-drugs-and-poultry.

  40. Barrett MP, Croft SL. Management of trypanosomiasis and leishmaniasis. Brit Med Bull. 2012;104(1):175–96. https://doi.org/10.1093/bmb/lds031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iland HJ, Seymour JF. Role of arsenic trioxide in acute promyelocytic leukemia. Curr Treat Options Oncol. 2013;14(2):170–84. https://doi.org/10.1007/s11864-012-0223-3.

    Article  PubMed  Google Scholar 

  42. Zhang P. On arsenic trioxide in the clinical treatment of acute promyelocytic leukemia. Leuk Res Rep. 2017;7:29–32. https://doi.org/10.1016/j.lrr.2017.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health. 2014;47(5):253–7. https://doi.org/10.3961/jpmph.14.036.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vahter M. Mechanisms of arsenic biotransformation. Toxicology. 2002;181–182:211–7. https://doi.org/10.1016/S0300-483X(02)00285-8.

    Article  PubMed  Google Scholar 

  45. Drobna Z, Styblo M, Thomas DJ. An overview of arsenic metabolism and toxicity. Curr Protoc Toxicol. 2009;42(431):4.31.1-4.31.6. https://doi.org/10.1002/0471140856.tx0431s42.

    Article  PubMed  Google Scholar 

  46. Sattar A, Xie S, Hafeez MA, Wang X, Hussain HI, Iqbal Z, et al. Metabolism and toxicity of arsenicals in mammals. Environ Toxicol Pharmacol. 2016;48:214–24. https://doi.org/10.1016/j.etap.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  47. Francesconi KA, Tanggaar R, McKenzie CJ, Goessler W. Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem. 2002;48(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  48. Raml R, Goessler W, Traar P, Ochi T, Francesconi KA. Novel thioarsenic metabolites in human urine after ingestion of an arsenosugar, 2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside. Chem Res Toxicol. 2005;18(9):1444–50. https://doi.org/10.1021/tx050111h.

    Article  CAS  PubMed  Google Scholar 

  49. Luvonga C, Rimmer CA, Yu LL, Lee SB. Organoarsenicals in seafood: occurrence, dietary exposure, toxicity, and risk assessment considerations - a review. J Agr Food Chem. 2020;68(4):943–60. https://doi.org/10.1021/acs.jafc.9b07532.

    Article  CAS  Google Scholar 

  50. National Research Council. Arsenic in Drinking Water: 2001 Update. Washington, DC: The National Academies Press; 2001. p. 241.

    Google Scholar 

  51. Bozack AK, Saxena R, Gamble MV. Nutritional influences on one-carbon metabolism: effects on arsenic methylation and toxicity. Annu Rev Nutr. 2018;38:401–29. https://doi.org/10.1146/annurev-nutr-082117-051757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hall MN, Gamble MV. Nutritional manipulation of one-carbon metabolism: effects on arsenic methylation and toxicity. J Toxicol. 2012;2012:595307. https://doi.org/10.1155/2012/595307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bozack AK, Howe CG, Hall MN, Liu X, Slavkovich V, Ilievski V, et al. Betaine and choline status modify the effects of folic acid and creatine supplementation on arsenic methylation in a randomized controlled trial of Bangladeshi adults. Eur J Nutr. 2021;60(4):1921–34. https://doi.org/10.1007/s00394-020-02377-z.

    Article  CAS  PubMed  Google Scholar 

  54. Bozack AK, Hall MN, Liu X, Ilievski V, Lomax-Luu AM, Parvez F, et al. Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am J Clin Nutri. 2019;109(2):380–91. https://doi.org/10.1093/ajcn/nqy148.

    Article  Google Scholar 

  55. Zeisel SH. The supply of choline is important for fetal progenitor cells. Semin Cell Dev Biol. 2011;22(6):624–8. https://doi.org/10.1016/j.semcdb.2011.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. U.S. Environmental Profection Agency. Arsenic, Inorganic. CASRN, 7440-38. Integrated risk information system (IRIS) U.S. Environmental Protection Agency 2002. 

  57. Concha G, Vogler G, Nermell B, Vahter M. Low-level arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. Int Arch Occup Environ Health. 1998;71(1):42–6. https://doi.org/10.1007/s004200050248.

    Article  CAS  PubMed  Google Scholar 

  58. Gardner RM, Nermell B, Kippler M, Grandér M, Li L, Ekström E-C, et al. Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod Toxicol. 2011;31(2):210–8. https://doi.org/10.1016/j.reprotox.2010.11.002.

    Article  CAS  PubMed  Google Scholar 

  59. Skröder Löveborn H, Kippler M, Lu Y, Ahmed S, Kuehnelt D, Raqib R, et al. Arsenic metabolism in children differs from that in adults. Toxicol Sci. 2016;152(1):29–39. https://doi.org/10.1093/toxsci/kfw060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamauchi H, Takata A. Arsenic metabolism differs between child and adult patients during acute arsenic poisoning. Toxicol Appl Pharmacol. 2021;410:115352. https://doi.org/10.1016/j.taap.2020.115352.

    Article  CAS  PubMed  Google Scholar 

  61. Chowdhury UK, Rahman MM, Sengupta MK, Lodh D, Chanda CR, Roy S, et al. Pattern of excretion of arsenic compounds [arsenite, arsenate, MMA(V), DMA(V)] in urine of children compared to adults from an arsenic exposed area in Bangladesh. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(1):87–113. https://doi.org/10.1081/ese-120016883.

    Article  PubMed  Google Scholar 

  62. Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat M-P. What is the best biomarker to assess arsenic exposure via drinking water? Environ Int. 2012;39(1):150–71. https://doi.org/10.1016/j.envint.2011.07.015.

    Article  CAS  PubMed  Google Scholar 

  63. Valentine JL, Kang HK, Spivey G. Arsenic levels in human blood, urine, and hair in response to exposure via drinking water. Environ Res. 1979;20(1):24–32. https://doi.org/10.1016/0013-9351(79)90082-3.

    Article  CAS  PubMed  Google Scholar 

  64. Concha G, Nermell B, Vahter M. Spatial and temporal variations in arsenic exposure via drinking-water in northern Argentina. J Health Popul Nutr. 2006;24(3):317–26.

    PubMed  PubMed Central  Google Scholar 

  65. Liu T, Guo H, Xiu W, Wei C, Li X, Di Z, et al. Biomarkers of arsenic exposure in arsenic-affected areas of the Hetao Basin, Inner Mongolia. The Science of the total environment. 2017;609:524–34. https://doi.org/10.1016/j.scitotenv.2017.07.120.

    Article  CAS  PubMed  Google Scholar 

  66. Buchet JP, Lauwerys R, Roels H. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. Int Arch Occ Env Hea. 1981;48(2):111–8. https://doi.org/10.1007/BF00378431.

    Article  CAS  Google Scholar 

  67. Gomez-Caminero A, Howe PD, Hughes M, Kenyon E, Lewis D, Moore M, et al. Arsenic and arsenic compounds: World Health Organization. 2001.

  68. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res. 2011;111(1):110–8. https://doi.org/10.1016/j.envres.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  69. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res. 2011;111(1):110–8. https://doi.org/10.1016/j.envres.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  70. Jones MR, Tellez-Plaza M, Vaidya D, Grau M, Francesconi KA, Goessler W, et al. Estimation of inorganic arsenic exposure in populations with frequent seafood intake: evidence from MESA and NHANES. Am J Epidemiol. 2016;184(8):590–602. https://doi.org/10.1093/aje/kww097.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grau-Perez M, Navas-Acien A, Galan-Chilet I, Briongos-Figuero LS, Morchon-Simon D, Bermudez JD, et al. Arsenic exposure, diabetes-related genes and diabetes prevalence in a general population from Spain. Environ Pollut. 2018;235:948–55. https://doi.org/10.1016/j.envpol.2018.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z, et al. Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Persp. 2007;115(10):1503–9. https://doi.org/10.1289/ehp.9906.

    Article  CAS  Google Scholar 

  73. Katz SA. On the use of hair analysis for assessing arsenic intoxication. Int J Environ Res Pu. 2019;16(6):977. https://doi.org/10.3390/ijerph16060977.

    Article  CAS  Google Scholar 

  74. Signes-Pastor AJ, Gutiérrez-González E, García-Villarino M, Rodríguez-Cabrera FD, López-Moreno JJ, Varea-Jiménez E, et al. Toenails as a biomarker of exposure to arsenic: a review. Environ Res. 2021;195:110286. https://doi.org/10.1016/j.envres.2020.110286.

    Article  CAS  PubMed  Google Scholar 

  75. Punshon T, Davis MA, Marsit CJ, Theiler SK, Baker ER, Jackson BP, et al. Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort. J Expo Sci Env Epid. 2015;25(6):599–603. https://doi.org/10.1038/jes.2015.16.

    Article  CAS  Google Scholar 

  76. Moffett D, Smith-Simon C, Stevens Y-W. Toxicological profile for barium and barium compounds. Report. Agency for Toxic Substances and Disease Registry; 2007. 

  77.  Klaassen CD, Watkins JB, Casarett LJ. Casarett & Doull's essentials of toxicology. New York: McGraw-Hill Medical; 2010. 

  78. Kravchenko J, Darrah TH, Miller RK, Lyerly HK, Vengosh A. A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Hlth. 2014;36(4):797–814. https://doi.org/10.1007/s10653-014-9622-7.

    Article  CAS  Google Scholar 

  79. Nigra AE, Ruiz-Hernandez A, Redon J, Navas-Acien A, Tellez-Plaza M. Environmental metals and cardiovascular disease in adults: a systematic review beyond lead and cadmium. Current Environ Health Rep. 2016;3(4):416–33. https://doi.org/10.1007/s40572-016-0117-9.

    Article  CAS  Google Scholar 

  80. Choudhury H, Cary R, World Health Organization, International Programme on Chemical Safety. Barium and barium compounds. Geneva: World Health Organization; 2001.

    Google Scholar 

  81. U.S. Environmental Protection Agency. Proceedings of the technical workshops for the hydraulic fracturing study: chemical & analytical methods. Washington, D.C.: Office of Research and Development, U.S. Environmental Protection Agency; 2011.

  82. Centers for Disease Control and Prevention. Fourth national report on human exposure to environmental chemicals, 2009. In: Services DoHaH, editor. 2009.

  83. Meister RT, Sine C. Crop protection handbook, Volume 100. Willoughby, Ohio: Meister Media Worldwide. 2014.

  84. Kenig J, Richter P, Żanowska K. Barium enema in the treatment algorithm of lower gastrointestinal tract bleeding. Pol Przegl Chir. 2013;85(8):467–70. https://doi.org/10.2478/pjs-2013-0072.

    Article  PubMed  Google Scholar 

  85. Puac P, Rodríguez A, Vallejo C, Zamora CA, Castillo M. Safety of contrast material use during pregnancy and lactation. Magn Reson Imaging C. 2017;25(4):787–97. https://doi.org/10.1016/j.mric.2017.06.010.

    Article  Google Scholar 

  86. Peana M, Medici S, Dadar M, Zoroddu MA, Pelucelli A, Chasapis CT, et al. Environmental barium: potential exposure and health-hazards. Arch Toxicol. 2021;95(8):2605–12. https://doi.org/10.1007/s00204-021-03049-5.

    Article  CAS  PubMed  Google Scholar 

  87. Calabrese EJ, Canada AT, Sacco C. Trace elements and public health. Annu Rev Publ Health. 1985;6(1):131–46.

    Article  CAS  Google Scholar 

  88. Schroeder HA, Tipton IH, Nason AP. Trace metals in man: strontium and barium. J Chron Dis. 1972;25(9):491–517. https://doi.org/10.1016/0021-9681(72)90150-6.

    Article  CAS  PubMed  Google Scholar 

  89. Underwood E. Trace elements in human and animal nutrition: Elsevier. 2012.

  90. Karlsson H, Toprak M, Fadeel B, Nordberg G, Fowler B, Nordberg M. Handbook on the toxicology of metals. Cambridge: Academic Press; 2014.

    Google Scholar 

  91. Brenniman G, Levy P. Epidemiological study of barium in Illinois drinking water supplies. Adv Mod Env. 1984;9:231–49.

    Google Scholar 

  92. Oskarsson A. Chapter 29 - Barium. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the toxicology of metals. 4th ed. San Diego: Academic Press; 2015. p. 625–34.

    Chapter  Google Scholar 

  93. Foster S, Choudhury H, Colman J, Ingerman L, Robbins P. Barium and compounds CASRN 7440-39-3 |IRIS|US EPA, ORD. Integrated risk information system (IRIS) U.S. Environmental Profection Agency 2005.

  94. Sutton A, Humphreys ER, Shepherd H, Howells GR. Reduction in the retention of radioactive barium in rats following the addition of sodium alginate derivatives to the diet. Int J Radiat Biol Relat Stud Phys Chem Med. 1972;22(3):297–300. https://doi.org/10.1080/09553007214551081.

    Article  CAS  PubMed  Google Scholar 

  95. Lengemann F. The site of action of lactose in the enhancement of calcium utilization. J Nutr. 1959;69:23–7.

    Article  CAS  PubMed  Google Scholar 

  96. Berggren P-O, Andersson T, Hellman B. The interaction between barium and calcium in β-cell-rich pancreatic islets. Biomed Res. 1983;4(2):129–38.

    Article  CAS  Google Scholar 

  97. Harrison GE, Carr TEF, Sutton A, Rundo J. Plasma concentration and excretion of calcium-47, strontium-85, barium-133 and radium-223 following successive intravenous doses to a healthy man. Nature. 1966;209(5022):526–7. https://doi.org/10.1038/209526b0.

    Article  CAS  PubMed  Google Scholar 

  98. Edel J, Di Nucci A, Sabbioni E, Manzo L, Tonini M, Minnoia C, et al. Biliary excretion of barium in the rat. Biol Trace Elem Res. 1991;30(3):267–76. https://doi.org/10.1007/BF02991421.

    Article  CAS  PubMed  Google Scholar 

  99. Bhoelan BS, Stevering CH, van der Boog ATJ, van der Heyden MAG. Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol. 2014;52(6):584–93. https://doi.org/10.3109/15563650.2014.923903.

    Article  CAS  Google Scholar 

  100. Foster PR, Elharrar V, Zipes DP. Accelerated ventricular escapes induced in the intact dog by barium, strontium and calcium. J Pharmacol Exp Ther. 1977;200(2):373–83.

    CAS  PubMed  Google Scholar 

  101. Jaklinski AMJ, Przegalinski E. Experimental studies on barium poisoning. J Forensic Med. 1967;14:13–5.

    CAS  Google Scholar 

  102. Schott GD, McArdle B. Barium-induced skeletal muscle paralysis in the rat, and its relationship to human familial periodic paralysis. J Neurol Neurosurg Psychiatry. 1974;37(1):32–9. https://doi.org/10.1136/jnnp.37.1.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Centers for Disease Control and Prevention. National report on human exposure to environmental chemicals. Atlanta, GA: CDC; 2001.

    Google Scholar 

  104. Crinnion WJ. The CDC fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assists environmental medicine physicians. Altern Med Rev. 2010;15(2).

  105. Mauras Y, Allain P. Determination of barium in water and biological fluids by emission spectrometry with an inductively-coupled plasma. Anal Chim Acta. 1979;110(2):271–7.

    Article  CAS  Google Scholar 

  106. Schramel P. ICP and DCP emission spectrometry for trace element analysis in biomedical and environmental samples. A review. Spectrochim Acta B. 1988;43(8):881–96. https://doi.org/10.1016/0584-8547(88)80194-0.

    Article  Google Scholar 

  107. Shiraishi K, Kawamura H, Tanaka G-I. Determination of alkaline-earth metals in foetus bones by inductively-coupled plasma atomic-emission spectrometry. Talanta. 1987;34(10):823–7.

    Article  CAS  PubMed  Google Scholar 

  108. Kato M, Ohgami N, Ohnuma S, Hashimoto K, Tazaki A, Xu H, et al. Multidisciplinary approach to assess the toxicities of arsenic and barium in drinking water. Environ Health Prev Med. 2020;25. https://doi.org/10.1186/s12199-020-00855-8

  109. Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci Total Environ. 2018;645:1522–53. https://doi.org/10.1016/j.scitotenv.2018.07.103.

    Article  CAS  PubMed  Google Scholar 

  110. Turner A. Cadmium pigments in consumer products and their health risks. Sci Total Environ. 2019;657:1409–18. https://doi.org/10.1016/j.scitotenv.2018.12.096.

    Article  CAS  PubMed  Google Scholar 

  111. Ashizawa A, Faroon O, Ingerman L, Jenkins K, Tucker P, Wright S. Toxicological profile for cadmium. Report. Agency for Toxic Substances and Disease Registry; 2012.

  112. Staessen JA, Vyncke G, Lauwerys RR, Roels HA, Celis HG, Claeys F, et al. Transfer of cadmium from a sandy acidic soil to man: a population study. Environ Res. 1992;58(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  113. Lalor GC. Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Sci Total Environ. 2008;400(1–3):162–72.

    Article  CAS  PubMed  Google Scholar 

  114. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut R. 2016;23(9):8244–59.

    Article  CAS  Google Scholar 

  115. Tellez-Plaza M, Navas-Acien A, Caldwell KL, Menke A, Muntner P, Guallar E. Reduction in cadmium exposure in the United States population, 1988–2008: the contribution of declining smoking rates. Environ Health Persp. 2012;120(2):204–9. https://doi.org/10.1289/ehp.1104020.

    Article  CAS  Google Scholar 

  116. Olmedo P, Grau-Perez M, Fretts A, Tellez-Plaza M, Gil F, Yeh F, et al. Dietary determinants of cadmium exposure in the Strong Heart Family Study. Food Chem Toxicol. 2017;100:239–46. https://doi.org/10.1016/j.fct.2016.12.015.

    Article  CAS  Google Scholar 

  117. Choudhury H, Harvey T, Thayer WC, Lockwood TF, Stiteler WM, Goodrum PE, et al. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure-biokinetics model. J Tox Env Health A. 2001;63(5):321–50.

    Article  CAS  Google Scholar 

  118. U.S. Environmental Protection Agency. Second integrated urban air toxics report to congress [updated 11/24/2020]. Available from: https://www.epa.gov/urban-air-toxics/second-integrated-urban-air-toxics-report-congress

  119. Otahara Y, Izuno T, Tatemichi M, Sugita M. Estimating cadmium absorption rate in digestive organs calculated from information of studies on cadmium conducted in Japan. J UOEH. 2003;25(2):171–83. https://doi.org/10.7888/juoeh.25.171.

    Article  CAS  PubMed  Google Scholar 

  120. McLellan J, Flanagan P, Chamberlain M, Valberg L. Measurement of dietary cadmium absorption in humans. J Tox Env Health A. 1978;4(1):131–8.

    Article  CAS  Google Scholar 

  121. Rentschler G, Kippler M, Axmon A, Raqib R, Ekström E-C, Skerfving S, et al. Polymorphisms in iron homeostasis genes and urinary cadmium concentrations among nonsmoking women in Argentina and Bangladesh. Environ Health Persp. 2013;121(4):467–72.

    Article  Google Scholar 

  122. Nishijo M, Satarug S, Honda R, Tsuritani I, Aoshima K. The gender differences in health effects of environmental cadmium exposure and potential mechanisms. Mol Cell Biochem. 2004;255(1–2):87–92. https://doi.org/10.1023/b:mcbi.0000007264.37170.39.

    Article  CAS  PubMed  Google Scholar 

  123. Yu H-t, Zhen J, Leng J-y, Cai L, Ji H-l, Keller BB. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin. 2020:1–7. https://doi.org/10.1038/s41401-020-0396-4

  124. Grau-Perez M, Voruganti VS, Balakrishnan P, Haack K, Goessler W, Franceschini N, et al. Genetic variation and urine cadmium levels: ABCC1 effects in the Strong Heart Family Study. Environ Pollut. 2021;276:116717. https://doi.org/10.1016/j.envpol.2021.116717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int J Environ Res Public Health 2020;17(11). https://doi.org/10.3390/ijerph17113782

  126. Järup L, Berglund M, Elinder CG, Nordberg G, Vanter M. Health effects of cadmium exposure – a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24:1–51.

  127. Prozialeck WC, Edwards JR. Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther. 2012;343(1):2–12. Epub 2012/06/07. https://doi.org/10.1124/jpet.110.166769. PubMed PMID: 22669569; PubMed Central PMCID: 3464032.

  128. Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28(10):2838–44. https://doi.org/10.1681/asn.2017040421.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kjellström T, Nordberg GF. A kinetic model of cadmium metabolism in the human being. Environ Res. 1978;16(1):248–69. https://doi.org/10.1016/0013-9351(78)90160-3.

    Article  PubMed  Google Scholar 

  130. Hsieh CY, Wang SL, Fadrowski JJ, Navas-Acien A, Kuo CC. Urinary concentration correction methods for arsenic, cadmium, and mercury: a systematic review of practice-based evidence. Curr Environ Health Rep. 2019;6(3):188–99. https://doi.org/10.1007/s40572-019-00242-8.

    Article  CAS  PubMed  Google Scholar 

  131. Vacchi-Suzzi C, Kruse D, Harrington J, Levine K, Meliker JR. Is urinary cadmium a biomarker of long-term exposure in humans? a review. Curr Environ Health Rep. 2016;3(4):450–8. https://doi.org/10.1007/s40572-016-0107-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vacchi-Suzzi C, Porucznik CA, Cox KJ, Zhao Y, Ahn H, Harrington JM, et al. Temporal variability of urinary cadmium in spot urine samples and first morning voids. J Expo Sci Env Epid. 2017;27(3):306–12.

    Article  CAS  Google Scholar 

  133. Kido T, Sunaga K, Nishijo M, Nakagawa H, Kobayashi E, Nogawa K. The relation of individual cadmium concentration in urine with total cadmium intake in Kakehashi River basin. Japan Toxicol Lett. 2004;152(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  134. Kobayashi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, et al. Association between lifetime cadmium intake and cadmium concentration in individual urine. B Environ Contam Tox. 2005;74(5):817–21.

    Article  CAS  Google Scholar 

  135. Shimbo S, Zhang Z-W, Moon C-S, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, et al. Correlation between urine and blood concentrations, and dietary intake of cadmium and lead among women in the general population of Japan. Int Arch Occ Env Hea. 2000;73(3):163–70.

    Article  CAS  Google Scholar 

  136. Meliker JR, Vacchi-Suzzi C, Harrington J, Levine K, Lui LY, Bauer DC, et al. Temporal stability of urinary cadmium in samples collected several years apart in a population of older persons. Int J Hyg Environ Health. 2019;222(2):230–4. https://doi.org/10.1016/j.ijheh.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  137. Ikeda M, Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, et al. Reproducibility of urinary cadmium, α 1-microglobulin, and β 2-microglobulin levels in health screening of the general population. Arch Environ Con Tox. 2004;48(1):135–40.

    Article  Google Scholar 

  138. Oliveira AS, Costa EAC, Pereira EC, Freitas MAS, Freire BM, Batista BL, et al. The applicability of fingernail lead and cadmium levels as subchronic exposure biomarkers for preschool children. Sci Total Environ. 2021;758:143583. https://doi.org/10.1016/j.scitotenv.2020.143583.

    Article  CAS  PubMed  Google Scholar 

  139. Esteban-Vasallo MD, Aragonés N, Pollan M, López-Abente G, Perez-Gomez B. Mercury, cadmium, and lead levels in human placenta: a systematic review. Environ Health Persp. 2012;120(10):1369–77. https://doi.org/10.1289/ehp.1204952.

    Article  CAS  Google Scholar 

  140. Berlin M, Blanks R, Catton M, Kazantzis G, Mottet NK, Samiullah Y. Birth weight of children and cadmium accumulation in placentas of female nickel-cadmium (long-life) battery workers. IARC Sci Publ. 1992;118:257–62.

    CAS  Google Scholar 

  141. Lagerkvist BJ, Sandberg S, Frech W, Jin T, Nordberg GF. Is placenta a good indicator of cadmium and lead exposure? Arch Environ Health. 1996;51(5):389–94. https://doi.org/10.1080/00039896.1996.9934427.

    Article  CAS  PubMed  Google Scholar 

  142. Falcón M, Vinas P, Osuna E, Luna A. Environmental exposures to lead and cadmium measured in human placenta. Arch Environ Health. 2002;57(6):598–602. https://doi.org/10.1080/00039890209602094.

    Article  PubMed  Google Scholar 

  143. Kantola M, Purkunen R, Kröger P, Tooming A, Juravskaja J, Pasanen M, et al. Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg Environ Res. 2000;83(1):54–66. https://doi.org/10.1006/enrs.1999.4043.

    Article  CAS  PubMed  Google Scholar 

  144. Kippler M, Hoque AMW, Raqib R, Öhrvik H, Ekström E-C, Vahter M. Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett. 2010;192(2):162–8. https://doi.org/10.1016/j.toxlet.2009.10.018.

    Article  CAS  PubMed  Google Scholar 

  145. Roels H, Hubermont G, Buchet JP, Lauwerys R. Placental transfer of lead, mercury, cadmium, and carbon monoxide in women: III. Factors influencing the accumulation of heavy metals in the placenta and the relationship between metal concentration in the placenta and in maternal and cord blood. Environ Res. 1978;16(1):236–47. https://doi.org/10.1016/0013-9351(78)90159-7.

    Article  CAS  PubMed  Google Scholar 

  146. Ronco AM, Arguello G, Muñoz L, Gras N, Llanos M. Metals content in placentas from moderate cigarette consumers: correlation with newborn birth weight. Biometals. 2005;18(3):233–41. https://doi.org/10.1007/s10534-005-0583-2.

    Article  CAS  PubMed  Google Scholar 

  147. Stasenko S, Bradford EM, Piasek M, Henson MC, Varnai VM, Jurasović J, et al. Metals in human placenta: focus on the effects of cadmium on steroid hormones and leptin. J Appl Toxicol. 2010;30(3):242–53. https://doi.org/10.1002/jat.1490.

    Article  CAS  PubMed  Google Scholar 

  148. Baglan RJ, Brill AB, Schulert A, Wilson D, Larsen K, Dyer N, et al. Utility of placental tissue as an indicator of trace element exposure to adult and fetus. Environ Res. 1974;8(1):64–70. https://doi.org/10.1016/0013-9351(74)90063-2.

    Article  CAS  PubMed  Google Scholar 

  149. Abadin H, Ashizawa A, Llados F, Stevens Y-W. Toxicological profile for lead. Report. Agency for Toxic Substances and Disease Registry; 2007.

  150. U.S. Environmental Protection Agency. Prohibition on gasoline containing lead or lead additives for highway use. U.S. Environmental Protection Agency, 40 CFR part 80. 61 FR, 1996:3832–38.

  151. Hanna-Attisha M, Lanphear B, Landrigan P. Lead poisoning in the 21st century: the silent epidemic continues. American Public Health Association; 2018:1430.

  152. U.S. Environmental Protection Agency. Model-extrapolated Estimates of airborne lead concentrations at U.S. Airports, (Office of Air Quality Planning & Standards). EPA-420-R-20-003. Research Triangle Park, NC: U.S. EPA; 2020.

  153. World Health Organization. Children and digital dumpsites: e-waste exposure and child health. Geneva: World Health Organization; 2021. Report No.: 9240023909 Contract No.: Licence: CC BY-NC-SA 3.0 IGO.

  154. Brown MJ, Margolis S. Lead in drinking water and human blood lead levels in the United States. MMWR Suppl. 2012;61(4):1–9.

    PubMed  Google Scholar 

  155. Hanna-Attisha M, LaChance J, Sadler RC, Schnepp AC. Elevated blood lead levels in children associated with the flint drinking water crisis: a spatial analysis of risk and public health response. Am J Public Health. 2016;106(2):283–90. https://doi.org/10.2105/ajph.2015.303003.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Cowell W, Ireland T, Vorhees D, Heiger-Bernays W. Ground turmeric as a source of lead exposure in the United States. Public Health Rep. 2017;132(3):289–93. https://doi.org/10.1177/0033354917700109.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Forsyth JE, Nurunnahar S, Islam SS, Baker M, Yeasmin D, Islam MS, et al. Turmeric means “yellow” in Bengali: lead chromate pigments added to turmeric threaten public health across Bangladesh. Environ Res. 2019;179(Pt A):108722. https://doi.org/10.1016/j.envres.2019.108722.

    Article  CAS  PubMed  Google Scholar 

  158. Zartarian V, Xue J, Tornero-Velez R, Brown J. Children’s lead exposure: a multimedia modeling analysis to guide public health decision-making. Environ Health Persp. 2017;125(9):097009. https://doi.org/10.1289/EHP1605.

    Article  Google Scholar 

  159. Centers for Disease Control and Prevention. Lead in foods, cosmetics, and medicines [updated 11/24/2020]. Available from: https://www.niehs.nih.gov/research/supported/exposure/mixtures/prime_program/index.cfm

  160. Abt E, Fong Sam J, Gray P, Robin LP. Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Addit Contam Part B Surveill. 2018;11(2):92–102. https://doi.org/10.1080/19393210.2017.1420700.

    Article  CAS  PubMed  Google Scholar 

  161. Bornschein RL, Succop PA, Krafft KM, Clark CS, Peace B, Hammond PB. Exterior surface dust lead, interior house dust lead and childhood lead exposure in an urban environment. Trace Subst Environ Health. 1986.

  162. Charney E, Sayre J, Coulter M. Increased lead absorption in inner city children: where does the lead come from? Pediatrics. 1980;65(2):226–31.

    Article  CAS  PubMed  Google Scholar 

  163. Dixon SL, Gaitens JM, Jacobs DE, Strauss W, Nagaraja J, Pivetz T, et al. Exposure of U.S. children to residential dust lead, 1999–2004: II. The contribution of lead-contaminated dust to children’s blood lead levels. Environ Health Persp. 2009;117(3):468–74. https://doi.org/10.1289/ehp.11918.

    Article  CAS  Google Scholar 

  164. Lanphear BP, Roghmann KJ. Pathways of lead exposure in urban children. Environ Res. 1997;74(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  165. Lanphear BP, Burgoon DA, Rust SW, Eberly S, Galke W. Environmental exposures to lead and urban children’s blood lead levels. Environ Res. 1998;76(2):120–30.

    Article  CAS  PubMed  Google Scholar 

  166. Succop P, Bornschein R, Brown K, Tseng C-Y. An empirical comparison of lead exposure pathway models. Environ Health Persp. 1998;106(suppl 6):1577–83.

    Article  CAS  Google Scholar 

  167. Centers for Disease Control and Prevention. Blood lead reference value [updated 11/27/2020]. Available from: https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm

  168. Council on Environmental Health. Prevention of childhood lead toxicity. Pediatrics. 2016;138(1). https://doi.org/10.1542/peds.2016-1493.

  169. Heard M, Chamberlain A. Effect of minerals and food on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol. 1982;1(4):411–5.

    Article  CAS  PubMed  Google Scholar 

  170. James H, Hilburn M, Blair J. Effects of meals and meal times on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol. 1985;4(4):401–7.

    Article  CAS  PubMed  Google Scholar 

  171. Rabinowitz MB, Kopple JD, Wetherill GW. Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am J Clin Nutr. 1980;33(8):1784–8.

    Article  CAS  PubMed  Google Scholar 

  172. Watson WS, Morrison J, Bethel M, Baldwin N, Lyon D, Dobson H, et al. Food iron and lead absorption in humans. Am J Clin Nutr. 1986;44(2):248–56.

    Article  CAS  PubMed  Google Scholar 

  173. Blake K, Mann M. Effect of calcium and phosphorus on the gastrointestinal absorption of 203Pb in man. Environ Res. 1983;30(1):188–94.

    Article  CAS  PubMed  Google Scholar 

  174. Blake K, Barbezat G, Mann M. Effect of dietary constituents on the gastrointestinal absorption of 203Pb in man. Environ Res. 1983;30(1):182–7.

    Article  CAS  Google Scholar 

  175. Maddaloni M, Lolacono N, Manton W, Blum C, Drexler J, Graziano J. Bioavailability of soilborne lead in adults, by stable isotope dilution. Environ Health Persp. 1998;106(suppl 6):1589–94.

    Article  CAS  Google Scholar 

  176. Mahaffey KR, Annest JL. Association of erythrocyte protoporphyrin with blood lead level and iron status in the Second National Health and Nutrition Examination Survey, 1976–1980. Environ Res. 1986;41(1):327–38.

    Article  CAS  PubMed  Google Scholar 

  177. Marcus AH, Schwartz J. Dose—Response curves for erythrocyte protoporphyrin vs blood lead: Effects of iron status. Environ Res. 1987;44(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  178. de Almeida Lopes ACB, Navas-Acien A, Zamoiski R, Silbergeld EK, Carvalho MdFH, Buzzo ML, et al. Risk factors for lead exposure in adult population in southern Brazil. J Toxicol Env Heal A. 2015;78(2):92–108.

    Article  Google Scholar 

  179. de Souza ID, de Andrade AS, Dalmolin RJS. Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol. 2018;48(5):375–86.

    Article  PubMed  Google Scholar 

  180. Jaffe EK, Volin M, Bronson-Mullins CR, Dunbrack RL Jr, Kervinen J, Martins J, et al. An artificial gene for human porphobilinogen synthase allows comparison of an allelic variation implicated in susceptibility to lead poisoning. J Biol Chem. 2000;275(4):2619–26.

    Article  CAS  PubMed  Google Scholar 

  181. Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep. 2019;9(1):14225. https://doi.org/10.1038/s41598-019-50654-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, et al. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone. 2013;57(1):184–93. https://doi.org/10.1016/j.bone.2013.07.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Aufderheide AC, Wittmers LE. Selected aspects of the spatial distribution of lead in bone. Neurotoxicology. 1992;13(4):809–19.

    CAS  PubMed  Google Scholar 

  184. Berkowitz GS, Wolff MS, Lapinski RH, Todd AC. Prospective study of blood and tibia lead in women undergoing surgical menopause. Environ Health Persp. 2004;112(17):1673–8.

    Article  Google Scholar 

  185. Garrido Latorre F, Hernández-Avila M, Tamayo Orozco J, Albores Medina CA, Aro A, Palazuelos E, et al. Relationship of blood and bone lead to menopause and bone mineral density among middle-age women in Mexico City. Environ Health Persp. 2003;111(4):631–6.

    Article  Google Scholar 

  186. Korrick SA, Schwartz J, Tsaih S-W, Hunter DJ, Aro A, Rosner B, et al. Correlates of bone and blood lead levels among middle-aged and elderly women. Am J Epidemiol. 2002;156(4):335–43.

    Article  PubMed  Google Scholar 

  187. Nash D, Magder LS, Sherwin R, Rubin RJ, Silbergeld EK. Bone density-related predictors of blood lead level among peri-and postmenopausal women in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol. 2004;160(9):901–11.

    Article  PubMed  Google Scholar 

  188. Popovic M, McNeill FE, Chettle DR, Webber CE, Lee CV, Kaye WE. Impact of occupational exposure on lead levels in women. Environ Health Persp. 2005;113(4):478–84.

    Article  CAS  Google Scholar 

  189. Symanski E, Hertz-Picciotto I. Blood lead levels in relation to menopause, smoking, and pregnancy history. Am J Epidemiol. 1995;141(11):1047–58.

    Article  CAS  PubMed  Google Scholar 

  190. Chamberlain A, Heard M, Little P, Newton D, Wells A, Wiffen R. Investigations into lead from motor vehicles. Harwell, United Kingdom: United Kingdom Atomic Energy Authority; 1978. Report No.: AERE-R9198.

  191. Griffin T, Coulston F, Wills H. Biological and clinical effects of continuous exposure to airborne particulate lead. Arh Hig Rada Tokisko. 1975;26(Supplement):191–208.

    Google Scholar 

  192. Hernández-Ochoa I, García-Vargas G, López-Carrillo L, Rubio-Andrade M, Morán-Martínez J, Cebrián ME, et al. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol. 2005;20(2):221–8. https://doi.org/10.1016/j.reprotox.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

  193. Hursh JB, Suomela J. Absorption of 212pb from the gastrointestinal tract of man. Acta Radiol Ther Phy. 1968;7(2):108–20. https://doi.org/10.3109/02841866809133184.

    Article  CAS  Google Scholar 

  194. Hursh J, Schraub A, Sattler E, Hofmann H. Fate of 212Pb inhaled by human subjects. Health Phys. 1969;16(3):257–67.

    Article  CAS  PubMed  Google Scholar 

  195. Kehoe RA, Suskind R, Hammond P. Studies of lead administration and elimination in adult volunteers under natural and experimentally induced conditions over extended periods of time. Food Chem Toxicol. 1987;25(6):425–93.

    CAS  Google Scholar 

  196. Rabinowitz MB, Wetherill GW, Kopple JD. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976;58(2):260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sears ME, Kerr KJ, Bray RI. Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health. 2012;2012:184745. https://doi.org/10.1155/2012/184745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Stauber J, Florence T, Gulson B, Dale L. Percutaneous absorption of inorganic lead compounds. Sci Total Environ. 1994;145(1–2):55–70.

    Article  CAS  PubMed  Google Scholar 

  199. Ettinger AS, Téllez-Rojo MM, Amarasiriwardena C, Bellinger D, Peterson K, Schwartz J, et al. Effect of breast milk lead on infant blood lead levels at 1 month of age. Environ Health Perspect. 2004;112(14):1381–5. https://doi.org/10.1289/ehp.6616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Esteban-Vasallo MD, Aragonés N, Pollan M, López-Abente G, Perez-Gomez B. Mercury, cadmium, and lead levels in human placenta: a systematic review. Environ Health Perspect. 2012;120(10):1369–77. https://doi.org/10.1289/ehp.1204952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hu H, Shih R, Rothenberg S, Schwartz BS. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Persp. 2007;115(3):455–62.

    Article  CAS  Google Scholar 

  202. Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Persp. 2005;113(12):1669–74.

    Article  CAS  Google Scholar 

  203. Skerfving S, Bergdahl IA. Chapter 31 - Lead. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT, editors. Handbook on the toxicology of metals. 3rd ed. Burlington: Academic Press; 2007. p. 599–643.

    Chapter  Google Scholar 

  204. Armstrong R, Chettle D, Scott MC, Somervaille LJ, Pendlington M. Repeated measurements of tibia lead concentrations by in vivo x ray fluorescence in occupational exposure. Occup Environ Med. 1992;49(1):14–6.

    Article  CAS  Google Scholar 

  205. Behinaein S, Chettle DR, Egden LM, McNeill FE, Norman G, Richard N, et al. The estimation of the rates of lead exchange between body compartments of smelter employees. Environ Sci-Proc Imp. 2014;16(7):1705–15. https://doi.org/10.1039/C4EM00032C.

    Article  CAS  Google Scholar 

  206. Chuang H-Y, Schwartz J, Tsai S-Y, Lee M-LT, Wang J-D, Hu H. Vibration perception thresholds in workers with long term exposure to lead. Occup Environ Med. 2000;57(9):588–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fleming D, Boulay D, Richard NS, Robin J-P, Gordon CL, Webber CE, et al. Accumulated body burden and endogenous release of lead in employees of a lead smelter. Environ Health Persp. 1997;105(2):224–33.

    Article  CAS  Google Scholar 

  208. Gerhardsson L, Attewell R, Chettle DR, Englyst V, Lundström NG, Nordberg GF, et al. In vivo measurements of lead in bone in long-term exposed lead smelter workers. Arch Enivorn Health. 1993;48(3):147–56. https://doi.org/10.1080/00039896.1993.9940813.

    Article  CAS  Google Scholar 

  209. Healey N, Chettle DR, McNeill FE, Fleming DEB. Uncertainties in the relationship between tibia lead and cumulative blood lead index. Environ Health Persp. 2008;116(3):A109-A. https://doi.org/10.1289/ehp.10778.

    Article  Google Scholar 

  210. McNeill FE, Stokes L, Brito JAA, Chettle DR, Kaye WE. 109Cd K x ray fluorescence measurements of tibial lead content in young adults exposed to lead in early childhood. Occup Environ Med. 2000;57(7):465–71. https://doi.org/10.1136/oem.57.7.465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Nie LH, Wright RO, Bellinger DC, Hussain J, Amarasiriwardena C, Chettle DR, et al. Blood lead levels and cumulative blood lead index (CBLI) as predictors of late neurodevelopment in lead poisoned children. Biomarkers. 2011;16(6):517–24. https://doi.org/10.3109/1354750X.2011.604133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Roels H, Konings J, Green S, Bradley D, Chettle D, Lauwerys R. Time-integrated blood lead concentration is a valid surrogate for estimating the cumulative lead dose assessed by tibial lead measurement. Environ Res. 1995;69(2):75–82.

    Article  CAS  PubMed  Google Scholar 

  213. Specht AJ, Lin Y, Weisskopf M, Yan C, Hu H, Xu J, et al. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning. Biomarkers. 2016;21(4):347–52. https://doi.org/10.3109/1354750X.2016.1139183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Specht AJ, Weisskopf MG, Nie LH. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone. Physiol Meas. 2017;38(3):575–85. https://doi.org/10.1088/1361-6579/aa5efe.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Specht AJ, Dickerson AS, Weisskopf MG. Comparison of bone lead measured via portable x-ray fluorescence across and within bones. Environ Res. 2019;172:273–8. https://doi.org/10.1016/j.envres.2019.02.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Behinaein S, Chettle DR, Marro L, Malowany M, Fisher M, Fleming DEB, et al. Factors influencing uncertainties of in vivo bone lead measurement using a 109Cd K X-ray fluorescence clover leaf geometry detector system. Environ Sci-Proc Imp. 2014;16(12):2742–51. https://doi.org/10.1039/C4EM00446A.

    Article  CAS  Google Scholar 

  217. Lee BK, Schwartz BS, Stewart W, Ahn KD. Provocative chelation with DMSA and EDTA: evidence for differential access to lead storage sites. Occup Environ Med. 1995;52(1):13–9. https://doi.org/10.1136/oem.52.1.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lee BK, Ahn KD, Lee SS, Lee GS, Kim YB, Schwartz BS. A comparison of different lead biomarkers in their associations with lead-related symptoms. Int Arch Occ Env Hea. 2000;73(5):298–304. https://doi.org/10.1007/s004200000132.

    Article  CAS  Google Scholar 

  219. Hoet P, Buchet J-P, Decerf L, Lavalleye B, Haufroid V, Lison D. Clinical evaluation of a lead mobilization test using the chelating agent dimercaptosuccinic acid. Clin Chem. 2006;52(1):88–96. https://doi.org/10.1373/clinchem.2005.051128.

    Article  CAS  PubMed  Google Scholar 

  220. Bud P, Montgomery J, Evans J, Barreiro B. Human tooth enamel as a record of the comparative lead exposure of prehistoric and modern people. The Science of the total environment. 2000;263(1–3):1–10. https://doi.org/10.1016/s0048-9697(00)00604-5.

    Article  CAS  PubMed  Google Scholar 

  221. Asaduzzaman K, Khandaker MU, Binti Baharudin NA, Amin YBM, Farook MS, Bradley DA, et al. Heavy metals in human teeth dentine: a bio-indicator of metals exposure and environmental pollution. Chemosphere. 2017;176:221–30. https://doi.org/10.1016/j.chemosphere.2017.02.114.

    Article  CAS  PubMed  Google Scholar 

  222. Koizumi A, Azechi M, Shirasawa K, Saito N, Saito K, Shigehara N, et al. Reconstruction of human exposure to heavy metals using synchrotron radiation microbeams in prehistoric and modern humans. Environ Health Prev Med. 2009;14(1):52–9. https://doi.org/10.1007/s12199-008-0059-4.

    Article  CAS  PubMed  Google Scholar 

  223. Uryu T, Yoshinaga J, Yanagisawa Y, Endo M, Takahashi J. Analysis of lead in tooth enamel by laser ablation-inductively coupled plasma-mass spectrometry. Anal Sci. 2003;19(10):1413–6. https://doi.org/10.2116/analsci.19.1413.

    Article  CAS  PubMed  Google Scholar 

  224. Needleman HL, Gunnoe C, Leviton A, Reed R, Peresie H, Maher C, et al. Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N Engl J Med. 1979;300(13):689–95. https://doi.org/10.1056/nejm197903293001301.

    Article  CAS  PubMed  Google Scholar 

  225. Arora M, Kennedy BJ, Elhlou S, Pearson NJ, Walker DM, Bayl P, et al. Spatial distribution of lead in human primary teeth as a biomarker of pre- and neonatal lead exposure. Sci Total Environ. 2006;371(1–3):55–62. https://doi.org/10.1016/j.scitotenv.2006.07.035.

    Article  CAS  PubMed  Google Scholar 

  226. Shepherd TJ, Dirks W, Manmee C, Hodgson S, Banks DA, Averley P, et al. Reconstructing the life-time lead exposure in children using dentine in deciduous teeth. Sci Total Environ. 2012;425:214–22. https://doi.org/10.1016/j.scitotenv.2012.03.022.

    Article  CAS  PubMed  Google Scholar 

  227. Arora M, Austin C, Sarrafpour B, Hernández-Ávila M, Hu H, Wright RO, et al. Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels. PLoS One. 2014;9(5):e97805. https://doi.org/10.1371/journal.pone.0097805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hubermont G, Buchet JP, Roels H, Lauwerys R. Placental transfer of lead, mercury and cadmium in women living in a rural area. Int Arch Occ Env Hea. 1978;41(2):117–24. https://doi.org/10.1007/BF00381796.

    Article  CAS  Google Scholar 

  229. Zhou C, Zhang R, Cai X, Xiao R, Yu H. Trace elements profiles of maternal blood, umbilical cord blood, and placenta in Beijing, China. J Matern Fetal Neonatal Med. 2019;32(11):1755–61. https://doi.org/10.1080/14767058.2017.1416602.

    Article  CAS  PubMed  Google Scholar 

  230. Sommar JN, Hedmer M, Lundh T, Nilsson L, Skerfving S, Bergdahl IA. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J Expo Sci Environ Epidemiol. 2014;24(1):51–7. https://doi.org/10.1038/jes.2013.4.

    Article  CAS  PubMed  Google Scholar 

  231. Kostova I, Vassileva C, Dai S, Hower JC, Apostolova D. Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. Int J Coal Geol. 2013;116:227–35.

    Article  Google Scholar 

  232. Gustin MS. Are mercury emissions from geologic sources significant? A status report. Sci Total Environ. 2003;304(1–3):153–67.

    Article  CAS  PubMed  Google Scholar 

  233. Martín JAR, Nanos N. Soil as an archive of coal-fired power plant mercury deposition. J Hazard Mater. 2016;308:131–8.

    Article  Google Scholar 

  234. Zhang H, Chen J, Zhu L, Yang G, Li D. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China. J Geochem Explor. 2014;144:312–9.

    Article  CAS  Google Scholar 

  235. Risher J, DeWoskin R. Toxicological Profile for Mercury: Chapter 5. Potential for human exposure. Atlanta, Georgia: U.S. Dept. of health and human services, Public Health Service, Agency for Toxic Substances and Disease Registry; 1999.

  236. Kim K-H, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85. https://doi.org/10.1016/j.jhazmat.2015.11.031.

    Article  CAS  PubMed  Google Scholar 

  237. Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: current research and emerging trends. Environ Res. 2017;159:545–54. https://doi.org/10.1016/j.envres.2017.08.051.

    Article  CAS  Google Scholar 

  238. Sakamoto M, Nakamura M, Murata K. Mercury as a global pollutant and mercury exposure assessment and health effects. Nihon Eiseigaku Zasshi. 2018;73(3):258–64. https://doi.org/10.1265/jjh.73.258.

    Article  CAS  Google Scholar 

  239. Bolan S, Kunhikrishnan A, Seshadri B, Choppala G, Naidu R, Bolan NS, et al. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environ Int. 2017;108:103–18. https://doi.org/10.1016/j.envint.2017.08.005.

    Article  CAS  PubMed  Google Scholar 

  240. Raj D, Maiti SK. Sources, toxicity, and remediation of mercury: an essence review. Environ Monit Assess. 2019;191(9):566. https://doi.org/10.1007/s10661-019-7743-2.

    Article  CAS  PubMed  Google Scholar 

  241. Halbach K, Mikkelsen Ø, Berg T, Steinnes E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere. 2017;188:567–74.

    Article  CAS  PubMed  Google Scholar 

  242. Bradley MA, Barst BD, Basu N. A review of mercury bioavailability in humans and fish. Int J Environ Res Pu. 2017;14(2):169.

    Article  Google Scholar 

  243. Tibau AV, Grube BD. Mercury contamination from dental amalgam. J Health Pollut. 2019;9(22):190612. https://doi.org/10.5696/2156-9614-9.22.190612.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Chen X, Xia X, Wu S, Wang F, Guo X. Mercury in urban soils with various types of land use in Beijing. China Environ Pollut. 2010;158(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  245. Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, et al. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev. 2017;332:30–7. https://doi.org/10.1016/j.ccr.2016.10.009.

    Article  CAS  Google Scholar 

  246. Risher J, DeWoskin R. Toxicological profile for mercury: chapter 2. Health effects. Atlanta, Georgia: U.S. Dept. of health and human services, public health service, agency for toxic substances and disease registry; 1999.

  247. Sunderland EM, Mason RP. Human impacts on open ocean mercury concentrations. Global Biogeochem Cycles. 2007;21(4).

  248. Feng X, Li P, Qiu G, Wang S, Li G, Shang L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province. China Environ Sci Technol. 2008;42(1):326–32.

    Article  CAS  PubMed  Google Scholar 

  249. Zhang H, Feng X, Larssen T, Qiu G, Vogt RD. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Persp. 2010;118(9):1183–8.

    Article  CAS  Google Scholar 

  250. Branco V, Caito S, Farina M, da Rocha JT, Aschner M, Carvalho C. Biomarkers of mercury toxicity: past, present, and future trends. J Toxicol Environ Health B Crit Rev. 2017;20(3):119–54. https://doi.org/10.1080/10937404.2017.1289834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hamann CR, Boonchai W, Wen L, Sakanashi EN, Chu C-Y, Hamann K, et al. Spectrometric analysis of mercury content in 549 skin-lightening products: is mercury toxicity a hidden global health hazard? J Am Acad Dermatol. 2014;70(2):281-7.e3. https://doi.org/10.1016/j.jaad.2013.09.050.

    Article  CAS  PubMed  Google Scholar 

  252. Podgórska A, Puścion-Jakubik A, Grodzka A, Naliwajko SK, Markiewicz-Żukowska R, Socha K. Natural and conventional cosmetics—mercury exposure assessment. Molecules. 2021;26(13):4088. https://doi.org/10.3390/molecules26134088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury—current exposures and clinical manifestations. New Engl J Med. 2003;349(18):1731–7.

    Article  CAS  PubMed  Google Scholar 

  254. Decharat S, Phethuayluk P, Maneelok S, Thepaksorn P. Determination of mercury exposure among dental health workers in Nakhon Si Thammarat Province, Thailand. J Toxicol. 2014;2014:401012.

  255. World Health Organization. Mercury. Geneva: World Health Organization; 1976.

    Google Scholar 

  256. Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: molecular evidence. Chemosphere. 2020;245:125586. https://doi.org/10.1016/j.chemosphere.2019.125586.

    Article  CAS  PubMed  Google Scholar 

  257. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health. 2012;2012:460508. https://doi.org/10.1155/2012/460508.

    Article  PubMed  Google Scholar 

  258. Magos L, Halbach S, Clarkson T. Role of catalase in the oxidation of mercury vapor. Biochem Pharmacol. 1978;27(9):1373–7.

    Article  CAS  Google Scholar 

  259. Nielsen-Kudsk F. Biological oxidation of elemental mercury. In: Miller MW, Clarkson TW(eds.) Mercury, mercurials and mercaptans. United States: Charles C Thomas,Springfield, IL, USA.

  260. Yaginuma-Sakurai K, Murata K, Iwai-Shimada M, Nakai K, Kurokawa N, Tatsuta N, et al. Hair-to-blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans. J Toxicol Sci. 2012;37(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  261. Rand MD, Vorojeikina D, van Wijngaarden E, Jackson BP, Scrimale T, Zareba G, et al. Methods for individualized determination of methylmercury elimination rate and de-methylation status in humans following fish consumption. Toxicol Sci. 2016;149(2):385–95.

    Article  CAS  Google Scholar 

  262. Jo S, Woo HD, Kwon H-J, Oh S-Y, Park J-D, Hong Y-S, et al. Estimation of the biological half-life of methylmercury using a population toxicokinetic model. Int J Environ Res Pu. 2015;12(8):9054–67.

    Article  CAS  Google Scholar 

  263. Rahola T, Hattula T, Korolainen A, Miettinen J. Elimination of free and protein-bound ionic mercury (203 Hg 2+) in man. Ann Clin Res. 1973;5(4):214–9.

    CAS  PubMed  Google Scholar 

  264. Rooney JP. The retention time of inorganic mercury in the brain—a systematic review of the evidence. Toxicol Appl Pharm. 2014;274(3):425–35.

    Article  CAS  Google Scholar 

  265. Rebelo FM, Caldas ED. Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res. 2016;151:671–88. https://doi.org/10.1016/j.envres.2016.08.027.

    Article  CAS  PubMed  Google Scholar 

  266. Cohen JH, Blanchard F, Vischer TL. Class II HLA antigens and rheumatoid factors in rheumatoid polyarthritis. Inverse influence of DR4 and DR7 antigens? Rev Rhum Mal Osteoartic. 1986;53(11):639–41.

    CAS  PubMed  Google Scholar 

  267. Vahter M, Åkesson A, Lind B, Björs U, Schütz A, Berglund M. Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ Res. 2000;84(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  268. Cernichiari E, Brewer R, Myers GJ, Marsh DO, Lapham LW, Cox C, et al. Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neurotoxicology. 1995;16(4):705–10.

    CAS  PubMed  Google Scholar 

  269. Cooke GM. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy. J Toxicol Environ Health B Crit Rev. 2014;17(4):205–24.

    Article  CAS  PubMed  Google Scholar 

  270. LaKind JS, Brent RL, Dourson ML, Kacew S, Koren G, Sonawane B, et al. Human milk biomonitoring data: interpretation and risk assessment issues. J Toxicol Environ Health, A. 2005;68(20):1713–69.

    Article  CAS  PubMed  Google Scholar 

  271. Risher J, DeWoskin R. Toxicological profile for mercury. Atlanta, Georgia: U.S. Dept. of health and human services, public health service, agency for toxic substances and disease registry; 1999.

  272. Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50(10):757–64.

    Article  CAS  PubMed  Google Scholar 

  273. Sakamoto M, Chan HM, Domingo JL, Oliveira RB, Kawakami S, Murata K. Significance of fingernail and toenail mercury concentrations as biomarkers for prenatal methylmercury exposure in relation to segmental hair mercury concentrations. Environ Res. 2015;136:289–94. https://doi.org/10.1016/j.envres.2014.09.034.

    Article  CAS  PubMed  Google Scholar 

  274. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609–62.

    Article  CAS  Google Scholar 

  275. Rees JR, Sturup S, Chen C, Folt C, Karagas MR. Toenail mercury and dietary fish consumption. J Expo Sci Environ Epidemiol. 2007;17(1):25–30. https://doi.org/10.1038/sj.jes.7500516.

    Article  CAS  PubMed  Google Scholar 

  276. Laffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J, Amouroux D, et al. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. Environ Sci Technol. 2011;45(23):9910–6.

    Article  CAS  PubMed  Google Scholar 

  277. Ask K, Akesson A, Berglund M, Vahter M. Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Persp. 2002;110(5):523–6. https://doi.org/10.1289/ehp.02110523.

    Article  CAS  Google Scholar 

  278. Bose-O’Reilly S, McCarty KM, Steckling N, Lettmeier B. Mercury exposure and children’s health. Curr Prob Pediatr Ad. 2010;40(8):186–215.

    Google Scholar 

  279. Zalups RK, Barfuss DW, Kostyniak PJ. Altered intrarenal accumulation of mercury in uninephrectomized rats treated with methylmercury chloride. Toxicol Appl Pharm. 1992;115(2):174–82.

    Article  CAS  Google Scholar 

  280. Caito SW, Jackson BP, Punshon T, Scrimale T, Grier A, Gill SR, et al. Editor’s highlight: variation in methylmercury metabolism and elimination status in humans following fish consumption. Toxicol Sci. 2017;161(2):443–53. https://doi.org/10.1093/toxsci/kfx226.

    Article  CAS  PubMed Central  Google Scholar 

  281. Queipo-Abad S, González PR, Martínez-Morillo E, Davis WC, García Alonso JI. Concentration of mercury species in hair, blood and urine of individuals occupationally exposed to gaseous elemental mercury in Asturias (Spain) and its comparison with individuals from a control group formed by close relatives. Sci Total Environ. 2019;672:314–23. https://doi.org/10.1016/j.scitotenv.2019.03.367.

    Article  CAS  PubMed  Google Scholar 

  282. Sherman LS, Blum JD, Franzblau A, Basu N. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ Sci Technol. 2013;47(7):3403–9.

    Article  CAS  PubMed  Google Scholar 

  283. Berglund M, Lind B, Björnberg KA, Palm B, Einarsson Ö, Vahter M. Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environ Health. 2005;4(1):1–11.

    Article  Google Scholar 

  284. Centers for Disease Control and Prevention. Biomonitoring summary: mercury [updated 4/7/2017]. Available from: https://www.cdc.gov/biomonitoring/Mercury_BiomonitoringSummary.html

  285. Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hemat. 2002;42(1):35–56. https://doi.org/10.1016/S1040-8428(01)00214-1.

    Article  CAS  Google Scholar 

  286. Abadin H, Fay M, Wilbur S, Ingerman L, Swarts SG. Toxicological profile for Nickel. Atlanta, Georgia: U.S. Dept. of health and human services, public health service, agency for toxic substances and disease registry; 2005.

  287. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human health and environmental toxicology. Int J Environ Res Pu. 2020;17(3):679.

    Article  CAS  Google Scholar 

  288. Zambelli B, Ciurli S. Nickel and Human Health. In: Sigel A, Sigel H, Sigel RK, editors. Metal Ions in Life Sciences: Interrelations between essential metal ions and human diseases. 13. Netherlands: Springer; 2013.

  289. Babaahmadifooladi M, Jacxsens L, Van de Wiele T, Du Laing G. Gap analysis of nickel bioaccessibility and bioavailability in different food matrices and its impact on the nickel exposure assessment. Food Res Int. 2020;129:108866.

    Article  CAS  PubMed  Google Scholar 

  290. Cempel M, Nikel G. Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15(3).

  291. Abadin H, Fay M, Wilbur SB. Toxicological profile for nickel. Chapter 6: Potential for human exposure. 2005.

  292. Wittsiepe J, Schnell K, Hilbig A, Schrey P, Kersting M, Wilhelm M. Dietary intake of nickel and zinc by young children – results from food duplicate portion measurements in comparison to data calculated from dietary records and available data on levels in food groups. J Trace Elem Med Biol. 2009;23(3):183–94. https://doi.org/10.1016/j.jtemb.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  293. Zhao D, Aravindakshan A, Hilpert M, Olmedo P, Rule AM, Navas-Acien A, et al. Metal/metalloid levels in electronic cigarette liquids, aerosols, and human biosamples: a systematic review. Environ Health Persp. 2020;128(3):036001.

    Article  CAS  Google Scholar 

  294. Zhao D, Navas-Acien A, Ilievski V, Slavkovich V, Olmedo P, Adria-Mora B, et al. Metal concentrations in electronic cigarette aerosol: effect of open-system and closed-system devices and power settings. Environ Res. 2019;174:125–34. https://doi.org/10.1016/j.envres.2019.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Oskarsson A, Tjälve H. The distribution and metabolism of nickel carbonyl in mice. Occup Environ Med. 1979;36(4):326–35.

    Article  CAS  Google Scholar 

  296. Donald GB, Donald B. Nickel. Clin Toxicol. 1999;37:239–58.

    Google Scholar 

  297. Costa M, Abbracchio MP, Simmons-Hansen J. Factors influencing the phagocytosis, neoplastic transformation, and cytotoxicity of particulate nickel compounds in tissue culture systems. Toxicol Appl Pharm. 1981;60(2):313–23.

    Article  CAS  Google Scholar 

  298. Tallkvist J, Bowlus CL, Lönnerdal B. Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol Toxicol. 2003;92(3):121–4.

    Article  CAS  PubMed  Google Scholar 

  299. Moody RP, Joncas J, Richardson M, Petrovic S, Chu I. Contaminated soils (II): in vitro dermal absorption of nickel (Ni-63) and mercury (Hg-203) in human skin. J Toxicol Environ Health A. 2009;72(8):551–9. https://doi.org/10.1080/15287390802706322.

    Article  CAS  PubMed  Google Scholar 

  300. Crosera M, Adami G, Mauro M, Bovenzi M, Baracchini E, Larese FF. In vitro dermal penetration of nickel nanoparticles. Chemosphere. 2016;145:301–6. https://doi.org/10.1016/j.chemosphere.2015.11.076.

    Article  CAS  PubMed  Google Scholar 

  301. World Health Organization. Regional office for Europe. Air quality guidelines for Europe. 2nd ed: World Health Organization. Regional Office for Europe. 2000.

  302. Tjälve H, Jasim S, Oskarsson A. Nickel mobilization by sodium diethyldithiocarbamate in nickel-carbonyl-treated mice. IARC Sci Publ. 1984;53:311–20.

    Google Scholar 

  303. Kasprzak KS, Waalkes MP, Poirier LA. Effects of magnesium acetate on the toxicity of nickelous acetate in rats. Toxicology. 1986;42(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  304. Owumi SE, Olayiwola YO, Alao GE, Gbadegesin MA, Odunola OA. Cadmium and nickel co-exposure exacerbates genotoxicity and not oxido-inflammatory stress in liver and kidney of rats: Protective role of omega-3 fatty acid. Environ Toxicol. 2020;35(2):231–41. https://doi.org/10.1002/tox.22860.

    Article  CAS  PubMed  Google Scholar 

  305. Johansson A, Curstedt T, Jarstrand C, Robertson B, Camner P. Effects on the rabbit lung of combined exposure to nickel and trivalent chromium. J Aerosol Sci. 1988;19(7):1075–8.

    Article  CAS  Google Scholar 

  306. Arenas IA, Navas-Acien A, Ergui I, Lamas GA. Enhanced vasculotoxic metal excretion in post-myocardial infarction patients following a single edetate disodium-based infusion. Environ Res. 2017;158:443–9. https://doi.org/10.1016/j.envres.2017.06.039.

    Article  CAS  PubMed  Google Scholar 

  307. Abadin H, Fay M, Wilbur SB. Toxicological profile for Nickel. Chapter 3: health effects. Atlanta, Georgia: U.S. dept. of health and human services, public health service, agency for toxic substances and disease registry; 2005.

  308. Sunderman JRFW, Aitio A, Morgan LG, Norseth T. Biological monitoring of nickel. Toxicol Ind Health. 1986;2(1):17–78.

    Article  CAS  PubMed  Google Scholar 

  309. Sunderman FW. Biological monitoring of nickel in humans. Scand J Work Environ Health. 1993;19:34–8.

  310. Morgan L, Rouge P. Biological monitoring in nickel refinery workers. IARC Sci Publ. 1984;53:507–20.

    CAS  Google Scholar 

  311. Bernacki E, Zygowicz E, Sunderman F. Fluctuations of nickel concentrations in urine of electroplating workers. Ann Clin Lab Sci. 1980;10(1):33–9.

    CAS  PubMed  Google Scholar 

  312. Templeton DM, Sunderman FW, Herber RFM. Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: evaluation according to the TRACY protocol. Sci Total Environ. 1994;148(2):243–51. https://doi.org/10.1016/0048-9697(94)90400-6.

    Article  CAS  PubMed  Google Scholar 

  313. Reichrtová E, Dorociak F, Palkovicová L. Sites of lead and nickel accumulation in the placental tissue. Hum Exp Toxicol. 1998;17(3):176–81. https://doi.org/10.1177/096032719801700309.

    Article  PubMed  Google Scholar 

  314. Harper C, Llados F. Toxicological profile for tin and tin compounds. 2005. PubMed PMID: cdc:7003.

  315. Okoro HK, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG, Opeolu B. Human exposure, biomarkers, and fate of organotins in the environment. Rev Environ Contam Toxicol. 2011;213:27–54. https://doi.org/10.1007/978-1-4419-9860-6_2.

    Article  CAS  PubMed  Google Scholar 

  316. Cao DJ, Aldy K, Hsu S, McGetrick M, Verbeck G, De Silva I, et al. Review of health consequences of electronic cigarettes and the outbreak of electronic cigarette, or vaping, product use-associated lung injury. J Med Toxicol. 2020;16(3):295–310. https://doi.org/10.1007/s13181-020-00772-w.

    Article  PubMed  PubMed Central  Google Scholar 

  317. National Institute of Diabetes Digestive Kidney Diseases. LiverTox: clinical and research information on drug-induced liver injury: National Institute of Diabetes and Digestive and Kidney Diseases; 2012.

  318. Sadiki A-D, Williams DT. A study on organotin levels in Canadian drinking water distributed through PVC pipesa. Chemosphere. 1999;38(7):1541–8.

    Article  CAS  PubMed  Google Scholar 

  319. Izah SC, Inyang IR, Angaye TCN, Okowa IP. A review of heavy metal concentration and potential health implications of beverages consumed in Nigeria. Toxics. 2016;5(1). https://doi.org/10.3390/toxics5010001

  320. Azenha M, Vasconcelos MT. Butyltin compounds in Portuguese wines. J Agr Food Chem. 2002;50(9):2713–6.

    Article  CAS  Google Scholar 

  321. Deshwal GK, Panjagari NR. Review on metal packaging: materials, forms, food applications, safety and recyclability. J Food Sci Technol. 2020;57(7):2377–92. https://doi.org/10.1007/s13197-019-04172-z.

    Article  PubMed  Google Scholar 

  322. Chien L-C, Hung T-C, Choang K-Y, Yeh C-Y, Meng P-J, Shieh M-J, et al. Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ. 2002;285(1–3):177–85.

    Article  CAS  PubMed  Google Scholar 

  323. Rantakokko P, Turunen A, Verkasalo PK, Kiviranta H, Männistö S, Vartiainen T. Blood levels of organotin compounds and their relation to fish consumption in Finland. Sci Total Environ. 2008;399(1–3):90–5.

    Article  CAS  PubMed  Google Scholar 

  324. Lehmler HJ, Gadogbe M, Liu B, Bao W. Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014. Environ Pollut. 2018;240:599–606. https://doi.org/10.1016/j.envpol.2018.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Johnson MA, Greger J. Effects of dietary tin on tin and calcium metabolism of adult males. Am J Clin Nutr. 1982;35(4):655–60.

    Article  CAS  PubMed  Google Scholar 

  326. Gadogbe M, Bao W, Wels BR, Dai SY, Santillan DA, Santillan MK, et al. Levels of tin and organotin compounds in human urine samples from Iowa, United States. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2019;54(9):884–90. https://doi.org/10.1080/10934529.2019.1605779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Domingo JL. Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol. 2001;15(6):603–9.

    Article  CAS  PubMed  Google Scholar 

  328. Faroon O, Ingerman L, Roney N, Scinicariello F, Wilbur SB. Toxicological profile for uranium. chapter 3: health effects. Atlanta, GA: U.S. dept. of health and human services, public health service, agency for toxic substances and disease registry; 2013.

  329. Liesch T, Hinrichsen S, Goldscheider N. Uranium in groundwater–fertilizers versus geogenic sources. Sci Total Environ. 2015;536:981–95. https://doi.org/10.1016/j.scitotenv.2015.05.133.

    Article  CAS  PubMed  Google Scholar 

  330. Hegedűs M, Tóth-Bodrogi E, Németh S, Somlai J, Kovács T. Radiological investigation of phosphate fertilizers: leaching studies. J Environ Radioact. 2017;173:34–43.

    Article  PubMed  Google Scholar 

  331. Wang S, Ran Y, Lu B, Li J, Kuang H, Gong L, et al. A Review of uranium-induced reproductive toxicity. Biol Trace Elem Res. 2020;196(1):204–13. https://doi.org/10.1007/s12011-019-01920-2.

    Article  CAS  PubMed  Google Scholar 

  332. Souidi M, Tissandie E, Racine R, Soussan HB, Rouas C, Grignard E, et al. Uranium: propriétés et effets biologiques après contamination interne. Annales de Biologie Clinique. 2009;67(1):23–38.

  333. Banning A, Demmel T, Rüde TR, Wrobel M. Groundwater uranium origin and fate control in a river valley aquifer. Environ Sci Technol. 2013;47(24):13941–8.

    Article  CAS  PubMed  Google Scholar 

  334. Bjørklund G, Christophersen OA, Chirumbolo S, Selinus O, Aaseth J. Recent aspects of uranium toxicology in medical geology. Environ Res. 2017;156:526–33. https://doi.org/10.1016/j.envres.2017.04.010.

    Article  CAS  PubMed  Google Scholar 

  335. Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, et al. Uranium in drinking water: a public health threat. Arch Toxicol. 2020;94(5):1551–60.

    Article  PubMed  Google Scholar 

  336. Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades. Environ Int. 2020;145:106107. https://doi.org/10.1016/j.envint.2020.106107.

    Article  CAS  PubMed  Google Scholar 

  337. Redvers N, Chischilly AM, Warne D, Pino M, Lyon-Colbert A. Uranium exposure in American Indian communities: health, policy, and the way forward. Environ Health Persp. 2021;129(3):035002. https://doi.org/10.1289/EHP7537.

    Article  Google Scholar 

  338. Sobel M, Sanchez TR, Zacher T, Mailloux B, Powers M, Yracheta J, et al. Spatial relationship between well water arsenic and uranium in Northern Plains native lands. Environ Pollut. 2021;287:117655. https://doi.org/10.1016/j.envpol.2021.117655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Credo J, Torkelson J, Rock T, Ingram JC. Quantification of elemental contaminants in unregulated water across western Navajo Nation. Int J Environ Res Public Health. 2019;16(15). https://doi.org/10.3390/ijerph16152727

  340. Lai JL, Liu ZW, Li C, Luo XG. Analysis of accumulation and phytotoxicity mechanism of uranium and cadmium in two sweet potato cultivars. J Hazard Mater. 2021;409:124997. https://doi.org/10.1016/j.jhazmat.2020.124997.

    Article  CAS  PubMed  Google Scholar 

  341. Bellés M, Linares V, Perelló G, Domingo JL. Human dietary exposure to uranium in Catalonia. Spain Biol Trace Elem Res. 2013;152(1):1–8.

    Article  PubMed  Google Scholar 

  342. Keith LS, Faroon OM, Fowler BA. Chapter 59 - Uranium. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the toxicology of metals. 4th ed. San Diego: Academic Press; 2015. p. 1307–45.

    Chapter  Google Scholar 

  343. Yue Y-C, Li M-H, Wang H-B, Zhang B-L, He W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med. 2018;23(1):18. https://doi.org/10.1186/s12199-018-0706-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Petitot F, Frelon S, Moreels AM, Claraz M, Delissen O, Tourlonias E, et al. Incorporation and distribution of uranium in rats after a contamination on intact or wounded skin. Health Phys. 2007;92(5):464–74.

    Article  CAS  PubMed  Google Scholar 

  345. Guéguen Y, Roy L, Hornhardt S, Badie C, Hall J, Baatout S, et al. Biomarkers for uranium risk assessment for the development of the CURE (Concerted Uranium Research in Europe) molecular epidemiological protocol. Radiat Res. 2017;187(1):107–27. https://doi.org/10.1667/RR14505.1.

    Article  PubMed  Google Scholar 

  346. Stradling GN, Smith H, Cooper JR, Ham SE, Cooke N, Sedgwick D, et al. Factors affecting the abundance of uranium isotopes in body tissues and excreta following the deposition of enriched uranium dioxide in the lungs--the radiological implications. Health Physics. 1984;46(2):434–8.

  347. Konietzka R. Gastrointestinal absorption of uranium compounds – a review. Regul Toxicol Pharmacol. 2015;71(1):125–33. https://doi.org/10.1016/j.yrtph.2014.08.012.

    Article  CAS  PubMed  Google Scholar 

  348. International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides: Part 4 Inhalation dose coefficients. Ann ICRP. 1995;25(3–4):i–i. https://doi.org/10.1016/s0146-6453(00)80008-1.

    Article  Google Scholar 

  349. Leggett R, Harrison J. Fractional absorption of ingested uranium in humans. Health Phys. 1995;68(4):484–98.

    Article  CAS  PubMed  Google Scholar 

  350. Spencer H, Osis D, Fisenne IM, Perry PM, Harley NH. Measured intake and excretion patterns of naturally occurring, and calcium in humans. Radiat Res. 1990;124(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  351. Wrenn ME, Singh NP, Ruth H, Rallison ML, Burleigh DP. Gastrointestinal absorption of soluble uranium from drinking water by man. Radiat Prot Dosimet. 1989;26(1–4):119–22. https://doi.org/10.1093/oxfordjournals.rpd.a080391.

    Article  CAS  Google Scholar 

  352. Zhu G, Tan M, Li Y, Xiang X, Hu H, Zhao S. Accumulation and distribution of uranium in rats after implantation with depleted uranium fragments. J Radiat Res. 2009;50(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  353. Busby C. Uranium and health: the health effects of exposure to uranium and uranium weapons fallout. Recommendations of the European Committee on Radiation Risk (ECRR), Brussels. 2010.

  354. Cooper JR, Stradling GN, Smith H, Ham SE. The behaviour of uranium-233 oxide and uranyl-233 nitrate in rats. Int J Radiat Biol Re. 1982;41(4):421–33.

    CAS  Google Scholar 

  355. Dounce AL FJ. The chemistry of uranium compounds. In: Voegtlin C, Hodge HC, editors. Pharmacology and toxicology of uranium compounds. 55. New York, NY: McGraw-Hill Book Co., Inc.; 1949. pp, 83–4.

  356. Stevens W, Bruenger F, Atherton D, Smith J, Taylor G. The distribution and retention of hexavalent 233U in the beagle. Radiat Res. 1980;83(1):109–26.

    Article  CAS  PubMed  Google Scholar 

  357. Wedeen R. Renal diseases of occupational origin. Occup Med. 1992;7(3):449–63.

    CAS  PubMed  Google Scholar 

  358. Vicente-Vicente L, Quiros Y, Perez-Barriocanal F, Lopez-Novoa JM, Lopez-Hernandez FJ, Morales AI. Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol Sci: Off J Soc Toxicol. 2010;118(2):324–47. https://doi.org/10.1093/toxsci/kfq178.

    Article  CAS  Google Scholar 

  359. Homma-Takeda S, Kokubo T, Terada Y, Suzuki K, Ueno S, Hayao T, et al. Uranium dynamics and developmental sensitivity in rat kidney. J Appl Toxicol. 2013;33(7):685–94.

    Article  CAS  PubMed  Google Scholar 

  360. McDiarmid MA, Hooper FJ, Squibb K, McPhaul K. The utility of spot collection for urinary uranium determinations in depleted uranium exposed Gulf War veterans. Health Phys. 1999;77(3):261–4.

    Article  CAS  PubMed  Google Scholar 

  361. Karpas Z, Lorber A, Sela H, Paz-Tal O, Hagag Y, Kurttio P, et al. Measurement of the 234U/238U ratio by MC-ICPMS in drinking water, hair, nails, and urine as an indicator of uranium exposure source. Health Phys. 2005;89(4):315–21.

    Article  CAS  PubMed  Google Scholar 

  362. Karpas Z. Uranium bioassay–beyond urinalysis. Health Phys. 2001;81(4):460–3.

    Article  CAS  PubMed  Google Scholar 

  363. Karpas Z, Paz-Tal O, Lorber A, Salonen L, Komulainen H, Auvinen A, et al. Urine, hair, and nails as indicators for ingestion of uranium in drinking water. Health Phys. 2005;88(3):229–42.

    Article  CAS  PubMed  Google Scholar 

  364. Muikku M, Puhakainen M, Heikkinen T, Ilus T. The mean concentration of uranium in drinking water, urine, and hair of the occupationally unexposed Finnish working population. Health Phys. 2009;96(6):646–54.

    Article  CAS  PubMed  Google Scholar 

  365. Ballou J, Gies R, Case A, Haggard D, Buschbom R, Ryan J. Deposition and early disposition of inhaled uranium-233 uranyl nitrate and uranium-232 uranyl nitrate in the rat. Health Phys. 1986;51:755–72.

    Article  CAS  PubMed  Google Scholar 

  366. Downs WL, Wilson HB, Sylvester GE, Leach LJ, Maynard EA. Excretion of uranium by rats following inhalation of uranium dioxide. Health Phys. 1967;13(5):445–53.

    Article  CAS  PubMed  Google Scholar 

  367. Leach LJ, Gelein RM, Panner BJ, Yulie CL, Cox CC, Balys MM, et al. Acute toxicity of the hydrolysis products of uranium hexafluoride (UF/sub6/) when inhaled by the rat and guinea pig. Final report. United States; 1984.  Contract No.: K/SUB-81-9039/3; ON: DE84011539.

  368. Morrow P, Gelein R, Beiter H, Scott J, Picano J, Yuile C. Inhalation and intravenous studies of UF6/UO2F2 in dogs. Health Phys. 1982;43(6):859–73.

    Article  CAS  PubMed  Google Scholar 

  369. West C, Scott L. Uranium cases showing long chest burden retention-an updating. Health Phys. 1969;17(6):781–91.

    Article  CAS  PubMed  Google Scholar 

  370. Wrenn M, Durbin PW, Howard B, Lipsztein J, Rundo J, Still ET, et al. Metabolism of ingested U and Ra. Health Phys. 1985;48(5):601–33.

    Article  CAS  PubMed  Google Scholar 

  371. Stradling G, Stather J, Gray S, Moody J, Ellender M, Hodgson A, et al. Metabolism of uranium in the rat after inhalation of two industrial forms of ore concentrate: the implications for occupational exposure. Hum Toxicol. 1987;6(5):385–93.

    Article  CAS  PubMed  Google Scholar 

  372. Marco R, Katorza E, Gonen R, German U, Tshuva A, Pelled O, et al. Normalisation of spot urine samples to 24-h collection for assessment of exposure to uranium. Radiat Prot Dosimet. 2008;130(2):213–23.

    Article  CAS  Google Scholar 

  373. May LM, Heller J, Kalinsky V, Ejnik J, Cordero S, Oberbroekling KJ, et al. Military deployment human exposure assessment: urine total and isotopic uranium sampling results. J Toxicol Environ Health A. 2004;67(8–10):697–714. https://doi.org/10.1080/15287390490428189.

    Article  CAS  PubMed  Google Scholar 

  374. Dang HS, Pullat VR, Pillai KC. Determining the normal concentration of uranium in urine and application of the data to its biokinetics. Health Phys. 1992;62(6):562–6. https://doi.org/10.1097/00004032-199206000-00010.

    Article  CAS  PubMed  Google Scholar 

  375. Orloff KG, Mistry K, Charp P, Metcalf S, Marino R, Shelly T, et al. Human exposure to uranium in groundwater. Environ Res. 2004;94(3):319–26. https://doi.org/10.1016/S0013-9351(03)00115-4.

    Article  CAS  PubMed  Google Scholar 

  376. Salcedo-Bellido I, Gutiérrez-González E, García-Esquinas E, de Larrea-Baz NF, Navas-Acien A, Téllez-Plaza M, et al. Toxic metals in toenails as biomarkers of exposure: a review. Environ Res. 2021;197:111028. https://doi.org/10.1016/j.envres.2021.111028.

    Article  CAS  PubMed  Google Scholar 

  377. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Persp. 2005;113(1):68–72. https://doi.org/10.1289/ehp.7475.

    Article  CAS  Google Scholar 

  378. Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, et al. Agency for toxic substances and disease registry (ATSDR) Toxicological profiles. Toxicological profile for Manganese. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012. 

  379. Institute of Medicine. Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press; 2001. p. 800.

    Google Scholar 

  380. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Current environmental health reports. 2015;2(3):315–28. https://doi.org/10.1007/s40572-015-0056-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad Sci. 2004;1012:115–28. https://doi.org/10.1196/annals.1306.009.

    Article  CAS  PubMed  Google Scholar 

  382. Post JE. Manganese oxide minerals: crystal structures and economic and environmental significance. P Natl Acad Sci. 1999;96(7):3447–54.

    Article  CAS  Google Scholar 

  383. Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, et al. Agency for toxic substances and disease registry (ATSDR) toxicological profiles. Toxicological profile for Manganese: Chapter 6: potential for human exposure. Atlanta (GA): agency for toxic substances and disease registry (US); 2012.

  384. Gale EM, Wey H-Y, Ramsay I, Yen Y-F, Sosnovik DE, Caravan P. A Manganese-based alternative to gadolinium: contrast-enhanced MR angiography, excretion, pharmacokinetics, and metabolism. Radiology. 2018;286(3):865–72. https://doi.org/10.1148/radiol.2017170977.

    Article  PubMed  Google Scholar 

  385. Zhou IY, Ramsay IA, Ay I, Pantazopoulos P, Rotile NJ, Wong A, et al. Positron emission tomography-magnetic resonance imaging pharmacokinetics, in vivo biodistribution, and whole-body elimination of Mn-PyC3A. Invest Radiol. 2021;56(4):261–70. https://doi.org/10.1097/rli.0000000000000736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Aspects Med. 2005;26(4–5):353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. World Health Organization. Manganese in drinking water: background document for development of WHO guidelines for drinking-water quality. World Health Organization; 2021.

  388. Frisbie SH, Ortega R, Maynard DM, Sarkar B. The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ Health Persp. 2002;110(11):1147–53.

    Article  CAS  Google Scholar 

  389. Bowler RM, Gocheva V, Harris M, Ngo L, Abdelouahab N, Wilkinson J, et al. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology. 2011;32(5):596–605.

    Article  CAS  PubMed  Google Scholar 

  390. Huang C-C, Chu N-S, Lu C-S, Wang J-D, Tsai J-L, Tzeng J-L, et al. Chronic manganese intoxication. Arch Neurol. 1989;46(10):1104–6.

    Article  CAS  PubMed  Google Scholar 

  391. Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans. Front Biosci (Landmark Ed). 2018;23:1655–79. https://doi.org/10.2741/4665.

    Article  CAS  PubMed  Google Scholar 

  392. Leblondel G, Allain P. Manganese transport by Caco-2 cells. Biol Trace Elem Res. 1999;67(1):13–28. https://doi.org/10.1007/bf02784271.

    Article  CAS  PubMed  Google Scholar 

  393. Mena I, Horiuchi K, Burke K, Cotzias GC. Chronic manganese poisoning. Individual susceptibility and absorption of iron. Neurology. 1969;19(10):1000–6. https://doi.org/10.1212/wnl.19.10.1000.

    Article  CAS  PubMed  Google Scholar 

  394. Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9(8):1028–46. https://doi.org/10.1039/c7mt00079k.

    Article  CAS  PubMed  Google Scholar 

  395. Finley JW, Johnson PE, Johnson L. Sex affects manganese absorption and retention by humans from a diet adequate in manganese. Am J Clin Nutr. 1994;60(6):949–55.

    Article  CAS  Google Scholar 

  396. Raghib MH, Wai-Yee C, Rennert MO. Comparative biological availability of manganese from extrinsically labelled milk diets using sucking rats as a model. Brit J Nutr. 1986;55(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  397. Davidsson L, Cederblad A, Lönnerdal B, Sandström B. The effect of individual dietary components on manganese absorption in humans. Am J Clin Nutr. 1991;54(6):1065–70.

    Article  CAS  PubMed  Google Scholar 

  398. Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, et al. Manganese homeostasis in the nervous system. J Neurochem. 2015;134(4):601–10.

    Article  CAS  PubMed  Google Scholar 

  399. Leavens TL, Rao D, Andersen ME, Dorman DC. Evaluating transport of manganese from olfactory mucosa to striatum by pharmacokinetic modeling. Toxicol Sci. 2007;97(2):265–78.

    Article  CAS  PubMed  Google Scholar 

  400. Lucchini R, Dorman D, Elder A, Veronesi B. Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology. 2012;33(4):838–41.

    Article  CAS  PubMed  Google Scholar 

  401. Krebs N, Langkammer C, Goessler W, Ropele S, Fazekas F, Yen K, et al. Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol. 2014;28(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  402. Rahil-Khazen R, Bolann BJ, Myking A, Ulvik RJ. Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES). J Trace Elem Med Biol. 2002;16(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  403. Liu Y, Byrne P, Wang H, Koltick D, Zheng W, Nie LH. A compact DD neutron generator–based NAA system to quantify manganese (Mn) in bone in vivo. Physiol Meas. 2014;35(9):1899.

    Article  PubMed  PubMed Central  Google Scholar 

  404. Reaney SH, Kwik-Uribe CL, Smith DR. Manganese oxidation state and its implications for toxicity. Chem Res Toxicol. 2002;15(9):1119–26.

    Article  CAS  PubMed  Google Scholar 

  405. Jiang Y, Zheng W, Long L, Zhao W, Li X, Mo X, et al. Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure. Neurotoxicology. 2007;28(1):126–35.

    Article  CAS  PubMed  Google Scholar 

  406. Omokhodion FO, Howard JM. Trace elements in the sweat of acclimatized persons. Clin Chim Acta. 1994;231(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  407. Davis CD, Zech L, Greger J. Manganese metabolism in rats: an improved methodology for assessing gut endogenous losses. P Soc Exp Biol Med. 1993;202(1):103–8.

    Article  CAS  Google Scholar 

  408. Coles C, Crawford J, McClure PR, Roney N, Todd GD. Toxicological profile for manganese. Chapter 3: Health effects. 2012. PubMed PMID: cdc:12399.

  409. Bertinchamps A, Miller S, Cotzias G. Interdependence of routes excreting manganese. Am J Physiol. 1966;211(1):217–24.

    Article  CAS  PubMed  Google Scholar 

  410. Malecki EA, Radzanowski GM, Radzanowski TJ, Gallaher DD, Greger J. Biliary manganese excretion in conscious rats is affected by acute and chronic manganese intake but not by dietary fat. J Nutr. 1996;126(2):489–98.

    Article  CAS  PubMed  Google Scholar 

  411. Stastny D, Vogel RS, Picciano M. Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. Am J Clin Nutr. 1984;39(6):872–8.

    Article  CAS  PubMed  Google Scholar 

  412. Grünecker B, Kaltwasser S, Zappe A, Bedenk B, Bicker Y, Spoormaker V, et al. Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI. NMR Biomed. 2013;26(5):542–56.

    Article  PubMed  Google Scholar 

  413. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Current environmental health reports. 2015;2(3):315–28. https://doi.org/10.1007/s40572-015-0056-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Takeda A, Sawashita J, Okada S. Biological half-lives of zinc and manganese in rat brain. Brain Res. 1995;695(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  415. O’Neal SL, Hong L, Fu S, Jiang W, Jones A, Nie LH, et al. Manganese accumulation in bone following chronic exposure in rats: steady-state concentration and half-life in bone. Toxicol Lett. 2014;229(1):93–100.

    Article  PubMed  PubMed Central  Google Scholar 

  416. Yin S, Wang C, Wei J, Wang D, Jin L, Liu J, et al. Essential trace elements in placental tissue and risk for fetal neural tube defects. Environ Int. 2020;139:105688. https://doi.org/10.1016/j.envint.2020.105688.

    Article  CAS  PubMed  Google Scholar 

  417. Maccani JZ, Koestler DC, Houseman EA, Armstrong DA, Marsit CJ, Kelsey KT. DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol. 2015;57:43–9. https://doi.org/10.1016/j.reprotox.2015.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Baldwin M, Mergler D, Larribe F, Bélanger S, Tardif R, Bilodeau L, et al. Bioindicator and exposure data for a population based study of manganese. Neurotoxicology. 1999;20(2–3):343–53.

    CAS  PubMed  Google Scholar 

  419. Järvisalo J, Olkinuoral M, Kiilunen M, Kivistö H, Ristola P, Tossavainen A, et al. Urinary and blood manganese in occupationally nonexposed populations and in manual metal are welders of mild steel. Int Arch Occ Env Hea. 1992;63(7):495–501.

    Article  Google Scholar 

  420. Roels H, Ghyselen P, Buchet J-P, Ceulemans E, Lauwerys R. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Occup Environ Med. 1992;49(1):25–34.

    Article  CAS  Google Scholar 

  421. Smith D, Gwiazda R, Bowler R, Roels H, Park R, Taicher C, et al. Biomarkers of Mn exposure in humans. Am J Ind Med. 2007;50(11):801–11. https://doi.org/10.1002/ajim.20506.

    Article  CAS  PubMed  Google Scholar 

  422. Roels H, Lauwerys R, Genet P, Sarhan MJ, de Fays M, Hanotiau I, et al. Relationship between external and internal parameters of exposure to manganese in workers from a manganese oxide and salt producing plant. Am J Ind Med. 1987;11(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  423. Smyth LT, Ruhf R, Whitman N, Dugan T. Clinical manganism and exposure to manganese in the production and processing of ferromanganese alloy. J Occup Environ Med. 1973;15(2):101–9.

    CAS  Google Scholar 

  424. Zheng W, Kim H, Zhao Q. Comparative toxicokinetics of manganese chloride and methylcyclopentadienyl manganese tricarbonyl (MMT) in Sprague-Dawley rats. Toxicol Sci. 2000;54(2):295–301.

    Article  CAS  PubMed  Google Scholar 

  425. Myers JE, Thompson ML, Naik I, Theodorou P, Esswein E, Tassell H, et al. The utility of biological monitoring for manganese in ferroalloy smelter workers in South Africa. Neurotoxicology. 2003;24(6):875–83.

    Article  CAS  PubMed  Google Scholar 

  426. Apostoli P, Lucchini R, Alessio L. Are current biomarkers suitable for the assessment of manganese exposure in individual workers? Am J Ind Med. 2000;37(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  427. Bader M, Dietz M, Ihrig A, Triebig G. Biomonitoring of manganese in blood, urine and axillary hair following low-dose exposure during the manufacture of dry cell batteries. Int Arch Occ Env Hea. 1999;72(8):521–7.

    Article  CAS  Google Scholar 

  428. Liu W, Xin Y, Li Q, Shang Y, Ping Z, Min J, et al. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: a systematic review and meta-analysis. Environ Health. 2020;19(1):104. https://doi.org/10.1186/s12940-020-00659-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Lydén A, Larsson BS, Lindquist NG. Melanin affinity of manganese. Acta Pharmacol Tox. 1984;55(2):133–8.

    Article  Google Scholar 

  430. Hurley LS, Keen CL. 6 - Manganese. In: Mertz W, editor. Trace elements in human and animal nutrition. 5th ed. San Diego: Academic Press; 1987. p. 185–223.

    Chapter  Google Scholar 

  431. Sturaro A, Parvoli G, Doretti L, Allegri G, Costa C. The influence of color, age, and sex on the content of zinc, copper, nickel, manganese, and lead in human hair. Biol Trace Elem Res. 1994;40(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  432. Austin C, Richardson C, Smith D, Arora M. Tooth manganese as a biomarker of exposure and body burden in rats. Environ Res. 2017;155:373–9. https://doi.org/10.1016/j.envres.2017.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Signes-Pastor AJ, Bouchard MF, Baker E, Jackson BP, Karagas MR. Toenail manganese as biomarker of drinking water exposure: a reliability study from a US pregnancy cohort. J Expo Sci Environ Epidemiol. 2019;29(5):648–54. https://doi.org/10.1038/s41370-018-0108-z.

    Article  CAS  PubMed  Google Scholar 

  434. Zheng W, Fu SX, Dydak U, Cowan DM. Biomarkers of manganese intoxication. Neurotoxicology. 2011;32(1):1–8. https://doi.org/10.1016/j.neuro.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  435. Todd GD, Keith SMS, Faroon O, Melanie Buser MPH, Ingerman L, Hard C, et al. Toxicological profile for molybdenum. Chapter 5: potential for human exposure. Atlanta, GA: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 2020.

  436. Barceloux DG, Barceloux D. Molybdenum. J Toxicol-Clin Toxic. 1999;37(2):231–7. https://doi.org/10.1081/CLT-100102422.

    Article  CAS  Google Scholar 

  437. Fitzgerald D, Nicholson R, Regoli L. Environmental management criteria for molybdenum and selenium: a review relevant to the mining industry.  British Columbia Mine Reclamation Symposium; University of British Columbia: Norman B. Keevil Institute of Mining Engineering; 2008.

  438. Goldberg S, Lesch SM, Suarez DL. Predicting molybdenum adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci Soc Am J. 2002;66(6):1836–42.

    Article  CAS  Google Scholar 

  439. Polyak DE. Molybdenum.  Minerals yearbook. I. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey; 2018.  

  440. Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T, Tyerman SD. The role of molybdenum in agricultural plant production. Ann Bot. 2005;96(5):745–54. https://doi.org/10.1093/aob/mci226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Todd GD, Keith SMS, Faroon O, Melanie Buser MPH, Ingerman L, Hard C, et al. Toxicological profile for molybdenum. Atlanta, GA: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 2020.

  442. National Academies of Sciences Engineering and Medicine. Molybdenum-99 for medical imaging. Washington, DC: The National Academies Press; 2016. p. 263.

    Google Scholar 

  443. Rajagopalan K. Molybdenum: an essential trace element in human nutrition. Annu Rev Nutr. 1988;8(1):401–27.

    Article  CAS  PubMed  Google Scholar 

  444. BGS and DPHE. Arsenic contamination of groundwater in Bangladesh. British Geological Survey, Keyworth, 2001 British Geological Survey Report WC/00/19.

  445. Turnlund JR, Keyes WR, Peiffer GL. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men at five intakes of dietary molybdenum. Am J Clin Nutr. 1995;62(4):790–6. https://doi.org/10.1093/ajcn/62.4.790.

    Article  CAS  PubMed  Google Scholar 

  446. Giussani A, Arogunjo AM, Cantone MC, Tavola F, Veronese I. Rates of intestinal absorption of molybdenum in humans. App Radiat Isotopes. 2006;64(6):639–44.

    Article  CAS  Google Scholar 

  447. Werner E, Giussani A, Heinrichs U, Roth P, Greim H. Biokinetic studies in humans with stable isotopes as tracers. Part 2: Uptake of molybdenum from aqueous solutions and labelled foodstuffs. Isotopes Environ Health Stud. 1998;34(3):297–301. https://doi.org/10.1080/10256019808234063.

    Article  CAS  PubMed  Google Scholar 

  448. Novotny JA, Turnlund JR. Molybdenum intake influences molybdenum kinetics in men. J Nutr. 2007;137(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  449. Tipton IH, Cook MJ. Trace elements in human tissue Part II. Adult subjects from the United States. Health Phys. 1963;9(2):103–45.

    Article  CAS  PubMed  Google Scholar 

  450. Tipton I, Schroeder H, Perry H Jr, Cook M. Trace elements in human tissue Part III. Subjects from Africa, the Near and Far East and Europe. Health Phys. 1965;11(5):403–51.

    Article  CAS  PubMed  Google Scholar 

  451. Sorensen LB, Archambault M. Visualization of liver by scanning with mo99 (molybdate) as tracer. J Lab Clin Med 1963;62(2):330. 

  452. Sumino K, Hayakawa K, Shibata T, Kitamura S. Heavy metals in normal Japanese tissues: amounts of 15 heavy metals in 30 subjects. Arch Environ Health. 1975;30(10):487–94.

    Article  CAS  PubMed  Google Scholar 

  453. Yoo YC, Lee SK, Yang JY, In SW, Kim KW, Chung KH, et al. Organ distribution of heavy metals in autopsy material from normal Korean. J Health Sci. 2002;48(2):186–94.

    Article  CAS  Google Scholar 

  454. Zeisler R, Greenberg R, Stone S. Radiochemical and instrumental neutron activation analysis procedures for the determination of low level trace elements in human livers. J Radioanal Nucl Ch. 1988;124(1):47–63.

    Article  CAS  Google Scholar 

  455. Iyengar GV, Kollmer WE, Bowen HJM. Molybdenum. The elemental composition of human tissues and body fluids: a compilation of values for adults. New York: Verlag Chemie; 1978.

    Google Scholar 

  456. Bougle D, Bureau F, Foucault P, Duhamel J, Muller G, Drosdowsky M. Molybdenum content of term and preterm human milk during the first 2 months of lactation. Am J Clin Nutr. 1988;48(3):652–4.

    Article  CAS  PubMed  Google Scholar 

  457. Todd GD, Keith SMS, Faroon O, Melanie Buser MPH, Ingerman L, Hard C, et al. Toxicological profile for molybdenum. Chapter 3: Toxicokinetics, susceptible populations, biomarkers, chemical interactions. Atlanta, GA: U.S. 

  458. Mendel RR, Kruse T. Cell biology of molybdenum in plants and humans. BBA-Mol Cell Res. 2012;1823(9):1568–79.

    CAS  Google Scholar 

  459. Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature. 2009;460(7257):839–47.

    Article  CAS  PubMed  Google Scholar 

  460. Schwarz G. Molybdenum cofactor and human disease. Curr Opin Chem Biol. 2016;31:179–87. https://doi.org/10.1016/j.cbpa.2016.03.016.

    Article  CAS  PubMed  Google Scholar 

  461. Huisingh J, Matrone G. Copper-molybdenum interactions with the sulfate-reducing system in rumen microorganisms. P Soc Exp Biol Med. 1972;139(2):518–21.

    Article  CAS  Google Scholar 

  462. Gutiérrez-González E, García-Esquinas E, de Larrea-Baz NF, Salcedo-Bellido I, Navas-Acien A, Lope V, et al. Toenails as biomarker of exposure to essential trace metals: a review. Environ Res. 2019;179(Pt A):108787. https://doi.org/10.1016/j.envres.2019.108787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439–43. https://doi.org/10.1126/science.1083516.

    Article  CAS  PubMed  Google Scholar 

  464. Rayman MP. Selenoproteins and human health: insights from epidemiological data. BBA-Gen Subjects. 2009;1790(11):1533–40. https://doi.org/10.1016/j.bbagen.2009.03.014.

    Article  CAS  Google Scholar 

  465. Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68. https://doi.org/10.1016/S0140-6736(11)61452-9.

    Article  CAS  PubMed  Google Scholar 

  466. Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007;30(4):829–34. https://doi.org/10.2337/dc06-1726.

    Article  CAS  PubMed  Google Scholar 

  467. Weeks BS, Hanna MS, Cooperstein D. Dietary selenium and selenoprotein function. Med Sci Monit. 2012;18(8):RA127-32. https://doi.org/10.12659/msm.883258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, et al. Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res. 2018;164:288–301. https://doi.org/10.1016/j.envres.2018.02.037.

    Article  CAS  PubMed  Google Scholar 

  469. Risher J. Toxicological profile for selenium. Atlanta, Georgia: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 2003.

  470. Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: a review. Sci Total Environ. 2008;400(1):115–41. https://doi.org/10.1016/j.scitotenv.2008.06.024.

    Article  CAS  PubMed  Google Scholar 

  471. Burk RF, Hill KE. Regulation of selenium metabolism and transport. Annu Rev Nutr. 2015;35:109–34. https://doi.org/10.1146/annurev-nutr-071714-034250.

    Article  CAS  PubMed  Google Scholar 

  472. Johnson CC, Fordyce FM, Rayman MP. Symposium on ‘Geographical and geological influences on nutrition’ Factors controlling the distribution of selenium in the environment and their impact on health and nutrition: Conference on ‘Over- and undernutrition: challenges and approaches.’ Proc Nutr Soc. 2010;69(1):119–32.

    Article  CAS  PubMed  Google Scholar 

  473. Fairweather-Tait SJ, Collings R, Hurst R. Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr. 2010;91(5):1484S-S1491. https://doi.org/10.3945/ajcn.2010.28674J.

    Article  CAS  PubMed  Google Scholar 

  474. Butler JA, Thomson CD, Whanger PD, Robinson MF. Selenium distribution in blood fractions of New Zealand women taking organic or inorganic selenium. Am J Clin Nutr. 1991;53(3):748–54. https://doi.org/10.1093/ajcn/53.3.748.

    Article  CAS  PubMed  Google Scholar 

  475. Bügel S, Sandström B, Skibsted LH. Pork meat: a good source of selenium? J Trace Elem Med Biol. 2004;17(4):307–11. https://doi.org/10.1016/S0946-672X(04)80033-6.

    Article  PubMed  Google Scholar 

  476. Bergdahl IA. Fractionation of soluble selenium compounds from fish using size-exclusion chromatography with on-line detection by inductively coupled plasma mass spectrometry. Analyst. 1999;124(10):1435–8. https://doi.org/10.1039/A904024B.

    Article  CAS  PubMed  Google Scholar 

  477. Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125(1):71–8. https://doi.org/10.1039/A906320J.

    Article  CAS  PubMed  Google Scholar 

  478. Kirby JK, Lyons GH, Karkkainen MP. Selenium speciation and bioavailability in biofortified products using species-unspecific isotope dilution and reverse phase ion pairing−inductively coupled plasma−mass spectrometry. J Water Pollut Control Fed. 2008;56(5):1772–9. https://doi.org/10.1021/jf073030v.

    Article  CAS  Google Scholar 

  479. Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6(1):25–54. https://doi.org/10.1039/c3mt00185g.

    Article  CAS  PubMed  Google Scholar 

  480. Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem. 2007;282(16):12290–7. https://doi.org/10.1074/jbc.M611403200.

    Article  CAS  PubMed  Google Scholar 

  481. Olson GE, Winfrey VP, Hill KE, Burk RF. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem. 2008;283(11):6854–60. https://doi.org/10.1074/jbc.M709945200.

    Article  CAS  PubMed  Google Scholar 

  482. Suzuki Y, Hashiura Y, Matsumura K, Matsukawa T, Shinohara A, Furuta N. Dynamic pathways of selenium metabolism and excretion in mice under different selenium nutritional statuses. Metallomics. 2010;2(2):126–32. https://doi.org/10.1039/B915816B.

    Article  CAS  PubMed  Google Scholar 

  483. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A. 2002;99(25):15932–6. https://doi.org/10.1073/pnas.252610699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Alexander J. Chapter 52 - Selenium. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the toxicology of metals. 4th ed. San Diego: Academic Press; 2015. p. 1175–208.

    Chapter  Google Scholar 

  485. Maehira F, Luyo GA, Miyagi I, Oshiro M, Yamane N, Kuba M, et al. Alterations of serum selenium concentrations in the acute phase of pathological conditions. Clin Chim Acta. 2002;316(1–2):137–46.

    Article  CAS  PubMed  Google Scholar 

  486. Hill KE, Xia Y, Akesson B, Boeglin ME, Burk RF. Selenoprotein P concentration in plasma is an index of selenium status in selenium-deficient and selenium-supplemented Chinese subjects. J Nutr. 1996;126(1):138–45. https://doi.org/10.1093/jn/126.1.138.

    Article  CAS  PubMed  Google Scholar 

  487. Isobe Y, Asakura H, Tsujiguchi H, Kannon T, Takayama H, Takeshita Y, et al. Alcohol intake is associated with elevated serum levels of selenium and selenoprotein P in humans. Front Nutr. 2021;8:633703. https://doi.org/10.3389/fnut.2021.633703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  488. Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol Biomarkers Prev. 2006;15(4):804–10. https://doi.org/10.1158/1055-9965.EPI-05-0950.

    Article  CAS  PubMed  Google Scholar 

  489. Longnecker MP, Stram DO, Taylor PR, Levander OA, Howe M, Veillon C, et al. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology. 1996;7(4):384–90. https://doi.org/10.1097/00001648-199607000-00008.

    Article  CAS  PubMed  Google Scholar 

  490. Alfthan G. Can externally deposited Se be removed from hair? Clin Chem. 1985;31(3):500.

    Article  CAS  PubMed  Google Scholar 

  491. Hawkes WC, Alkan FZ, Oehler L. Absorption, distribution and excretion of selenium from beef and rice in healthy North American men. J Nutr. 2003;133(11):3434–42. https://doi.org/10.1093/jn/133.11.3434.

    Article  CAS  PubMed  Google Scholar 

  492. Clavaud C, Michelin C, Pourhamidi S, Ziane S, El Rawadi C, Muller B, et al. Selenium disulfide: a key ingredient to rebalance the scalp microbiome and sebum quality in the management of dandruff. Eur J Dermatol. 2023;33(S1):5–12. https://doi.org/10.1684/ejd.2023.4400.

    Article  CAS  PubMed  Google Scholar 

  493. Majeed M, Majeed S, Nagabhushanam K, Mundkur L, Neupane P, Shah K. Clinical study to evaluate the efficacy and safety of a hair serum product in healthy adult male and female volunteers with hair fall. Clin Cosmet Investig Dermatol. 2020;13:691–700. https://doi.org/10.2147/ccid.S271013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  494. Lee AM, Huel G, Godin J, Hellier G, Sahuquillo J, Moreau T, et al. Inter-individual variation of selenium in maternal plasma, cord plasma and placenta. Sci Total Environ. 1995;159(2):119–27. https://doi.org/10.1016/0048-9697(95)04123-I.

    Article  CAS  PubMed  Google Scholar 

  495. Lorenzo Alonso MJ, Bermejo Barrera A, de Juan JAC, Fraga Bermúdez JM, Bermejo BP. Selenium levels in related biological samples: human placenta, maternal and umbilical cord blood, hair and nails. J Trace Elem Med Biol. 2005;19(1):49–54. https://doi.org/10.1016/j.jtemb.2005.07.006.

    Article  CAS  PubMed  Google Scholar 

  496. Punshon T, Li Z, Marsit CJ, Jackson BP, Baker ER, Karagas MR. Placental metal concentrations in relation to maternal and infant toenails in a U.S. cohort. Environ Sci Technol. 2016;50(3):1587–94. https://doi.org/10.1021/acs.est.5b05316.

    Article  CAS  PubMed  Google Scholar 

  497. Roney N. Toxicological profile for zinc. Atlanta, Georgia: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 2005.

  498. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  499. Part III. Minerals. Zinc. In: Meyers LD, Hellwig JP, Otten JJ, editors. Dietary reference intakes: the essential guide to nutrient requirements: National Academies Press; 2006.

  500. Brown JL. Zinc fume fever. Brit J Radiol. 1988;61(724):327–9.

    Article  CAS  PubMed  Google Scholar 

  501. Drinker KR, Drinker P. Metal Fume Fever: V. Results of the inhalation by animals of zinc and magnesium oxide fumes. J Ind Hyg. 1928;10:56–70.

    CAS  Google Scholar 

  502. Malo J, Malo J, Cartier A, Dolovich J. Acute lung reaction due to zinc inhalation. Eur Respir J. 1990;3(1):111–4.

    Article  CAS  PubMed  Google Scholar 

  503. Lombardi-Boccia G, Aguzzi A, Cappelloni M, Di Lullo G, Lucarini M. Total-diet study: dietary intakes of macro elements and trace elements in Italy. Brit J Nutr. 2003;90(6):1117–21.

    Article  CAS  PubMed  Google Scholar 

  504. Roney N. Toxicological profile for zinc. Chapter 6: Potential for human exposure. Atlanta, Georgia: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 2005.

  505. Mirenda RJ. Acute toxicity and accumulation of zinc in the crayfish, Orconectes virilis (Hagen). B Environ Contam Tox. 1986;37(1):387–94.

    Article  CAS  Google Scholar 

  506. Fishbein L. Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel. Environ Health Persp. 1981;40:43–64.

    Article  CAS  Google Scholar 

  507. Gerhardsson L, Englyst V, Lundström N-G, Sandberg S, Nordberg G. Cadmium, copper and zinc in tissues of deceased copper smelter workers. J Trace Elem Med Biol. 2002;16(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  508. Sharrett AR, Carter AP, Orheimt RM, Feinleib M. Daily intake of lead, cadmium, copper, and zinc from drinking water: the Seattle study of trace metal exposure. Environ Res. 1982;28(2):456–75.

    Article  CAS  PubMed  Google Scholar 

  509. Pecoud A, Donzel P, Schelling J. Effect of foodstuffs on the absorption of zinc sulfate. Clin Pharmacol Ther. 1975;17(4):469–74.

    Article  CAS  PubMed  Google Scholar 

  510. Nelson LS Jr, Jacobs FA, Brushmiller JG. Solubility of calcium and zinc in model solutions based on bovine and human milks. J Inorg Biochem. 1985;24(4):255–65.

    Article  CAS  PubMed  Google Scholar 

  511. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985;65(2):238–309.

    Article  CAS  PubMed  Google Scholar 

  512. Wastney M, Aamodt R, Rumble W, Henkin R. Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol-Reg I. 1986;251(2):R398–408.

    CAS  Google Scholar 

  513. Bentley P, Grubb B. Experimental dietary hyperzincemia tissue disposition of excess zinc in rabbits. Trace Elem Med. 1991;8(4):202–7.

    CAS  Google Scholar 

  514. Llobet J, Domingo J, Colomina M, Mayayo E, Corbella J. Subchronic oral toxicity of zinc in rats. B Environ Contam Tox. 1988;41(1):36–43.

    Article  CAS  Google Scholar 

  515. Liu-Sheng H, Xiao-Shan Y, De-Chang W. Age-dependent variation of zinc-65 metabolism in LACA mice. Int J Radiat Biol. 1991;60(6):907–16.

    Article  Google Scholar 

  516. Spencer H, Kramer L, Osis D. Zinc metabolism in man. J Environ Pathol Tox. 1985;5(6):265–78.

    CAS  Google Scholar 

  517. Alexander J, Aaseth J, Refsvik T. Excretion of zinc in rat bile–a role of glutathione. Acta Pharmacol Tox. 1981;49(3):190–4.

    Article  CAS  Google Scholar 

  518. Bandeira VDS, Pires LV, Hashimoto LL, Alencar LL, Almondes KGS, Lottenberg SA, et al. Association of reduced zinc status with poor glycemic control in individuals with type 2 diabetes mellitus. J Trace Elem Med Biol. 2017;44:132–6. https://doi.org/10.1016/j.jtemb.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  519. Lech T, Sadlik JK. Zinc in postmortem body tissues and fluids. Biol Trace Elem Res. 2011;142(1):11–7. https://doi.org/10.1007/s12011-010-8747-5.

    Article  CAS  PubMed  Google Scholar 

  520. Honda R, Tawara K, Nishijo M, Nakagawa H, Tanebe K, Saito S. Cadmium exposure and trace elements in human breast milk. Toxicology. 2003;186(3):255–9.

    Article  CAS  PubMed  Google Scholar 

  521. Lowe NM, Fekete K, Decsi T. Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr. 2009;89(6):2040S-S2051. https://doi.org/10.3945/ajcn.2009.27230G.

    Article  CAS  PubMed  Google Scholar 

  522. Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review. Adv Nutr. 2016;7(4):735–46. https://doi.org/10.3945/an.116.012518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Maret W. Zinc and Human Disease. In: Sigel A, Sigel H, Sigel RKO, editors. Interrelations between essential metal ions and human diseases. Metal Ions in Life Sciences. Dordrecht: Springer Netherlands; 2013. pp, 389–414.

  524. Hobisch-Hagen P, Mörtl M, Schobersberger W. Hemostatic disorders in pregnancy and the peripartum period. Acta Anaesth Scand Suppl. 1997;111:216–7.

    CAS  Google Scholar 

  525. Duncan A, Talwar D, McMillan DC, Stefanowicz F, O’Reilly DSJ. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr. 2012;95(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  526. Galloway SP, McMillan DC, Sattar N. Effect of the inflammatory response on trace element and vitamin status. Ann Clin Biochem. 2000;37(3):289–97.

    Article  CAS  PubMed  Google Scholar 

  527. Taylor A. Detection and monitoring of disorders of essential trace elements. Ann Clin Biochem. 1996;33(6):486–510.

    Article  CAS  PubMed  Google Scholar 

  528. Ruz M, Cavan KR, Bettger WJ, Gibson RS. Erythrocytes, erythrocyte membranes, neutrophils and platelets as biopsy materials for the assessment of zinc status in humans. Br J Nutr. 1992;68(2):515–27. https://doi.org/10.1079/bjn19920109.

    Article  CAS  PubMed  Google Scholar 

  529. King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, et al. Biomarkers of Nutrition for Development (BOND)—zinc review. J Nutr. 2016;146(4):858S-S885. https://doi.org/10.3945/jn.115.220079.

    Article  PubMed Central  Google Scholar 

  530. McBean LD, Mahloudji M, Reinhold JG, Halsted JA. Correlation of zinc concentrations in human plasma and hair. Am J Clin Nutr. 1971;24(5):506–9.

    Article  CAS  PubMed  Google Scholar 

  531. Rivlin RS. Misuse of hair analysis for nutritional assessment. Am J Med. 1983;75(3):489–93.

    Article  CAS  PubMed  Google Scholar 

  532. Institute of Medicine (US) Subcommittee on interpretation and uses of dietary reference intakes. DRI dietary reference intakes: applications in dietary assessment. Washington (DC): National Academies Press (US); 2000.

  533. Sommar JN, Hedmer M, Lundh T, Nilsson L, Skerfving S, Bergdahl IA (2014) Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J Expo Sci Environ Epidemiol. 24(1):51–7. https://doi.org/10.1038/jes.2013.4

  534. Ansoborlo E, Lebaron-Jacobs L, Prat O. Uranium in drinking-water: a unique case of guideline value increases and discrepancies between chemical and radiochemical guidelines. Environ Int. 2015;77:1–4. https://doi.org/10.1016/j.envint.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  535. Roney N, Colman J. Interaction profile for lead, manganese, zinc, and copper. Environ Toxicol Pharmacol. 2004;18(3):231–4.

  536. Weaver VM, Vargas GG, Silbergeld EK, Rothenberg SJ, Fadrowski JJ, Rubio-Andrade M, et al. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ Res. 2014;132:226–32. https://doi.org/10.1016/j.envres.2014.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Abuawad A, Goldsmith J, Herbstman JB, Parvez F, Islam T, LoIacono N, et al. Urine dilution correction methods utilizing urine creatinine or specific gravity in arsenic analyses: comparisons to blood and water arsenic in the FACT and FOX studies in Bangladesh. Water. 2022;14(9):1477. https://doi.org/10.3390/w14091477.

    Article  CAS  Google Scholar 

  538. Arora M, Bradman A, Austin C, Vedar M, Holland N, Eskenazi B, et al. Determining fetal manganese exposure from mantle dentine of deciduous teeth. Environ Sci Technol. 2012;46(9):5118–25. https://doi.org/10.1021/es203569f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by National Institute of Environmental Health Sciences (NIEHS) grant P42 ES033719 (IMM, MS, ANA, TRS), NIEHS grant P30ES009089 (ANA, TRS), NIEHS grant R00ES030400 (CGH) and by a fellowship from La Caixa Foundation (ID100010434), fellowship code LCF/BQ/AA20/11820032 (IMM). The editors would like to thank Marc Weisskopf for assisting with the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Martinez-Morata.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Morata, I., Sobel, M., Tellez-Plaza, M. et al. A State-of-the-Science Review on Metal Biomarkers. Curr Envir Health Rpt 10, 215–249 (2023). https://doi.org/10.1007/s40572-023-00402-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-023-00402-x

Keywords

Navigation