Skip to main content
Log in

The effect of aging on gait parameters in able-bodied older subjects: a literature review

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Gait disorders are common in the elderly populations, and their prevalence increases with age. Abnormal gait has been associated with greater risk for adverse outcomes in older adults, such as immobility and falls, which in turn lead to loss of functional independence and death.

Aim

The purpose of this review was to evaluate all of the original papers that measured gait parameters in the healthy elderly subjects.

Method

The search strategy was based on Population Intervention Comparison Outcome method. A search was performed in Pub Med, Science Direct, Google scholar, ISI web of knowledge databases by using the selected keywords. Forty-two articles were selected for final evaluation. The procedure using the PRISMA method was followed.

Results

Stride lengths of older subjects ranged between 135 and 153 cm, and they preferred to walk with a 41 % increase in step width compared to young subjects. Cadence was reported to be between 103 and 112 steps/min in older adults. They consumed an average of 20–30 % more metabolic energy than younger subjects. All except one study demonstrated that older people have significantly reduced gait symmetry.

Conclusion

The progression toward shorter steps and slower walking and increased step width and prolonged double support in older adult, may therefore emerge as a compensatory strategy aimed at increasing stability, avoiding falls, or reducing the energetic cost of mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bloem BR, Haan J, Lagaay AM et al (1992) Investigation of gait in elderly subjects over 88 years of age. J Geriatr Psychiatry Neurol 5:78–84

    Article  CAS  PubMed  Google Scholar 

  2. Sudarsky L (2000) Gait disorders: prevalence, morbidity, and etiology. Adv Neurol 87:111–117

    Google Scholar 

  3. Guralnik JM, Ferrucci L, Pieper CF et al (2000) Lower extremity function and subsequent disability consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol Ser A Biol Sci Med Sci 55:M221–M231

    Article  CAS  Google Scholar 

  4. Seidler RD, Bernard JA, Burutolu TB et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jernigan TL, Archibald SL, Fennema-Notestine C et al (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594

    Article  CAS  PubMed  Google Scholar 

  6. Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers 1. Radiology 216:672–682

    Article  CAS  PubMed  Google Scholar 

  7. Ge Y, Grossman RI, Babb JS et al (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. Am J Neuroradiol 23:137–1333

    Google Scholar 

  8. Raz N, Rodrigue KM, Kennedy KM et al (2003) Differential aging of the human striatum: longitudinal evidence. Am J Neuroradiol 24:1849–1856

    PubMed  Google Scholar 

  9. Contreras-Vidal JL, Teulings H, Stelmach G (1998) Elderly subjects are impaired in spatial coordination in fine motor control. Acta Psychol 100:25–35

    Article  CAS  Google Scholar 

  10. Stelmach GE. Sensorimotor Impairment in the Elderly: Proceedings of the NATO Advanced Research Workshop, Bad Windsheim, Germany, September 11–13, 1992: Springer; 1993

  11. Callisaya ML, Beare R, Phan TG et al (2013) Brain structural change and gait decline: a longitudinal population-based study. J Am Geriatr Soc 61:1074–1079

    Article  PubMed  Google Scholar 

  12. Perry MC, Carville SF, Smith ICH et al (2007) Strength, power output and symmetry of leg muscles: effect of age and history of falling. Eur J Appl Physiol 100:553–561

    Article  PubMed  Google Scholar 

  13. Kirkwood RN, de Souza Moreira B, Vallone ML et al (2011) Step length appears to be a strong discriminant gait parameter for elderly females highly concerned about falls: a cross-sectional observational study. Physiotherapy 97:126–131

    Article  PubMed  Google Scholar 

  14. Polcyn AF, Lipsitz LA, Kerrigan DC et al (1998) Age-related changes in the initiation of gait: degradation of central mechanisms for momentum generation. Arch Phys Med Rehabil 79:1582–1589

    Article  CAS  PubMed  Google Scholar 

  15. Lord SR, Lloyd DG, LI SK (1996) Sensori-motor function, gait patterns and falls in community-dwelling women. Age Ageing 25:292–299

    Article  CAS  PubMed  Google Scholar 

  16. Prince F, Corriveau H, Hébert R et al (1997) Gait in the elderly. Gait Posture 5:128–135

    Article  Google Scholar 

  17. Pavol MJ, Owings TM, Foley KT et al (1999) Gait characteristics as risk factors for falling from trips induced in older adults. J Gerontol Ser A Biol Sci Med Sci 54:M583–M590

    Article  CAS  Google Scholar 

  18. Hausdorff JM, Forman DE, Ladin Z et al (1994) Increased walking variability in elderly persons with congestive heart failure. J Am Geriatr Soc 42:1056–1061

    Article  CAS  PubMed  Google Scholar 

  19. Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320

    Article  CAS  PubMed  Google Scholar 

  20. Samson M, Crowe A, De Vreede P et al (2001) Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin Exp Res 13:16–21

    Article  CAS  Google Scholar 

  21. Menz HB, Lord SR, Fitzpatrick RC (2003) Age-related differences in walking stability. Age Ageing 32:137–142

    Article  PubMed  Google Scholar 

  22. DeVita P, Hortobagyi T (2000) Age causes a redistribution of joint torques and powers during gait. J Appl Physiol 88:1804–1811

    CAS  PubMed  Google Scholar 

  23. Ling SM, Winters J, Ferrucci L (2009) Age-related mechanical work expenditure during normal walking: the baltimore longitudinal study of aging. J Biomech 42:1834–1839

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagano H, Begg RK, Sparrow WA et al (2013) A comparison of treadmill and overground walking effects on step cycle asymmetry in young and older individuals. J Appl Biomech 29:188–193

    PubMed  Google Scholar 

  25. Schrager MA, Kelly VE, Price R et al (2008) The effects of age on medio-lateral stability during normal and narrow base walking. Gait Posture 28:466–471

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lockhart TE, Woldstad JC, Smith JL (2003) Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 46:1136–1160

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hollman JH, McDade EM, Petersen RC (2011) Normative spatiotemporal gait parameters in older adults. Gait Posture 34:111–118

    Article  PubMed  PubMed Central  Google Scholar 

  28. Silder A, Heiderscheit B, Thelen DG (2008) Active and passive contributions to joint kinetics during walking in older adults. J Biomech 41:1520–1527

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hageman PA, Blanke DJ (1986) Comparison of gait of young women and elderly women. Phys Ther 66:1382–1387

    CAS  PubMed  Google Scholar 

  30. Beauchet O, Allali G, Annweiler C et al (2009) Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability. Gerontology 55:702–706

    Article  PubMed  Google Scholar 

  31. Dean JC, Alexander NB, Kuo AD (2007) The effect of lateral stabilization on walking in young and old adults. Biomed Eng IEEE Trans On 54:1919–1926

    Article  CAS  Google Scholar 

  32. Kobsar D, Olson C, Paranjape R et al (2014) Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture 39:553–557

    Article  PubMed  Google Scholar 

  33. Begg R, Sparrow W (2006) Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. J Med Eng Technol 30:382–389

    Article  CAS  PubMed  Google Scholar 

  34. McGibbon CA, Krebs DE (1999) Effect of Age and functional limitation on leg joint power and work during stance phase of gait. J Rehabil Res Dev 36:00

  35. Kobayashi H, Kakihana W, Kimura T (2014) Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration. J Neuroeng Rehabil 11:109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Petterson DS, Martin PE (2010) Effects of age and walking speed on coactivation and cost of walking in healthy adults. Gait Posture 31:355–359

    Article  Google Scholar 

  37. Arazpour M, Ahmadi F, Bani MA, Hutchins SW, Bahramizadeh M, Ghomshe FT et al (2013) Gait evaluation of new powered knee–ankle–foot orthosis in able-bodied persons: a pilot study. Prosthetics and orthotics international. 0309364613486917

  38. Alcock L, Vanicek N, O’Brien T (2013) Alterations in gait speed and age do not fully explain the changes in gait mechanics associated with healthy older women. Gait Posture 37:586–592

    Article  CAS  PubMed  Google Scholar 

  39. Oh-Park M, Holtzer R, Xue X, Verghese J (2010) Conventional and robust quantitative gait norms in community-dwelling older adults. J Am Geriatr Soc 58:1512–1518

    Article  PubMed  PubMed Central  Google Scholar 

  40. McGibbon CA, Krebs DE (2001) Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol 85:1923–1931

    CAS  PubMed  Google Scholar 

  41. Ko S-U, Tolea MI, Hausdorff JM, Ferrucci L (2011) Sex-specific differences in gait patterns of healthy older adults: results from the baltimore longitudinal study of aging. J Biomech 44:1974–1979

    Article  PubMed  PubMed Central  Google Scholar 

  42. S-u Ko, tenholm SS, Metter EJ, Ferrucci L (2012) Age-associated gait patterns and the role of lower extremity strength–results from the baltimore longitudinal study of aging. Arch Gerontol Geriatr 55:474–479

    Article  Google Scholar 

  43. Kerrigan DC, Lee LW, Collins JJ et al (2001) Reduced hip extension during walking: healthy elderly and fallers versus young adults. Arch Phys Med Rehabil 82:26–30

    Article  CAS  PubMed  Google Scholar 

  44. Kerrigan DC, Todd MK, Della Croce U et al (1998) Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Arch Phys Med Rehabil 79:317–322

    Article  CAS  PubMed  Google Scholar 

  45. Monaco V, Rinaldi LA, Macrì G, Micera S (2009) During walking elders increase efforts at proximal joints and keep low kinetics at the ankle. Clin Biomech 24:493–498

    Article  Google Scholar 

  46. Cofré LE, Lythgo N, Morgan D, Galea MP (2011) Aging modifies joint power and work when gait speeds are matched. Gait Posture 33:484–489

    Article  PubMed  Google Scholar 

  47. Lanza IR, Towse TF, Caldwell GE, Wigmore D, Kent-Braun JA (2003) Effects of age on human muscle torque, velocity, and power in two muscle groups. J Appl Physiol 95:2361–2369

    Article  CAS  PubMed  Google Scholar 

  48. Riley PO, Della Croce U, Casey Kerrigan D (2001) Effect of age on lower extremity joint moment contributions to gait speed. Gait Posture 14:264–270

    Article  CAS  PubMed  Google Scholar 

  49. Ko S-U, Hausdorff JM, Ferrucci L (2010) Age-associated differences in the gait pattern changes of older adults during fast-speed and fatigue conditions: results from the Baltimore longitudinal study of ageing. Age and ageing afq113

  50. Van Emmerik RE, McDermott W, Haddad JM et al (2005) Age-related changes in upper body adaptation to walking speed in human locomotion. Gait Posture 22:233–239

    Article  PubMed  Google Scholar 

  51. Knaggs JD, Larkin KA, Manini TM (2011) Metabolic cost of daily activities and effect of mobility impairment in older adults. J Am Geriatr Soc 59:2118–2123

    Article  PubMed  Google Scholar 

  52. Ortega JD, Farley CT (2007) Individual limb work does not explain the greater metabolic cost of walking in elderly adults. J Appl Physiol 102:2266–2273

    Article  PubMed  Google Scholar 

  53. Mian OS, Thom JM, Ardigò LP et al (2006) Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol 186:127–139

    Article  CAS  Google Scholar 

  54. McGibbon CA, Puniello MS, Krebs DE (2001) Mechanical energy transfer during gait in relation to strength impairment and pathology in elderly women. Clin Biomech 16:324–333

    Article  CAS  Google Scholar 

  55. Malatesta D, Simar D, Dauvilliers Y et al (2003) Energy cost of walking and gait instability in healthy 65-and 80-years-old. J Appl Physiol 95:2248–2256

    Article  PubMed  Google Scholar 

  56. Faulkner JA, Larkin LM, Claflin DR et al (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34:1091–1096

    Article  CAS  PubMed  Google Scholar 

  57. Welford AT Age and learning; theory and needed research. Experientia. 1955:136–143; discussion, 44

  58. Hall KS, Howe CA, Rana SR et al (2013) METs and accelerometry of walking in older adults: standard versus measured energy cost. Med Sci Sports Exerc 45:574–582

    Article  PubMed  Google Scholar 

  59. Fukagawa NK, Schultz AB (1995) Muscle function and mobility biomechanics in the elderly: an overview of some recent research. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 50:60–63

  60. Winter DA (1991) Biomechanics and motor control of human gait: normal, elderly and pathological

  61. Winegard KJ, Hicks AL, Sale DG, Vandervoort AA (1996) A 12-year follow-up study of ankle muscle function in older adults. J Gerontol Ser A Biol Sci Med Sci 51:B202–B207

    Article  CAS  Google Scholar 

  62. Bassey E, Bendall M, Pearson M (1988) Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin Sci 74:85–89

    Article  CAS  PubMed  Google Scholar 

  63. Winter DA, Patla AE, Frank JS et al (1990) Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 70:340–347

    CAS  PubMed  Google Scholar 

  64. Simoneau E, Martin A, Van Hoecke J (2007) Effects of joint angle and age on ankle dorsi-and plantar-flexor strength. J Electromyogr Kinesiol 17:307–316

    Article  PubMed  Google Scholar 

  65. Fukagawa NK, Brown M, Sinacore DR, Host HH (1995) The relationship of strength to function in the older adult. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 50:55-9

  66. Landers KA, Hunter GR, Wetzstein CJ, Bamman MM, Weinsier RL (2001) The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. J Gerontol Ser A Biol Sci Med Sci 56:B443–B448

    Article  CAS  Google Scholar 

  67. Moxley Scarborough D, Krebs DE, Harris BA (1999) Quadriceps muscle strength and dynamic stability in elderly persons. Gait Posture 10:10–20

    Article  CAS  PubMed  Google Scholar 

  68. JudgeRoy JO, Davis B, Õunpuu S (1996) Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol Ser A Biol Sci Med Sci 51:M303–M312

    Article  Google Scholar 

  69. Marcell TJ (2003) Review article: sarcopenia: causes, consequences, and preventions. J Gerontol Ser A Biol Sci Med Sci 58:M911–M916

    Article  Google Scholar 

  70. Martin PE, Rothstein DE, Larish DD (1992) Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol 73:200–206

    CAS  PubMed  Google Scholar 

  71. Donelan JM, Kram R (2001) Mechanical and metabolic determinants of the preferred step width in human walking. Proc R Soc Lond B Biol Sci 268:1985–1992

    Article  CAS  Google Scholar 

  72. Wert DM, Brach J, Perera S, VanSwearingen JM (2010) Gait biomechanics, spatial and temporal characteristics, and the energy cost of walking in older adults with impaired mobility. Phys Ther 90:977–985

    Article  PubMed  PubMed Central  Google Scholar 

  73. Grabiner PC, Biswas ST, Grabiner MD (2001) Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil 82:31–35

    Article  CAS  PubMed  Google Scholar 

  74. Stolze H, Friedrich HJ, Steinauer K, Vieregge P (2000) Stride parameters in healthy young and old women-measurement variability on a simple walkway. Exp Aging Res 26:159–168

    Article  CAS  PubMed  Google Scholar 

  75. Crenna P, Frigo C (2011) Dynamics of the ankle joint analyzed through moment–angle loops during human walking: gender and age effects. Hum Mov Sci 30:1185–1198

    Article  PubMed  Google Scholar 

  76. Kozakai R et al. (2000) Age-related changes in gait velocity and leg extension power in middle-aged and elderly people. J Epidemiol Epidemiol Assoc 10(1 Suppl):S77–S81

    Article  CAS  Google Scholar 

  77. Kaya BK, Krebs DE, Riley PO (1998) Dynamic stability in elders: momentum control in locomotor ADL. The J Gerontol Ser A Biol Sci Med Sci 53:M126–M134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Arazpour.

Ethics declarations

Conflict of interest

The authors did not have any conflicts of interest with regards to the study presented in this paper.

Human and Animal Rights

This study does not contain any studies with animals and humans performed by any of the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboutorabi, A., Arazpour, M., Bahramizadeh, M. et al. The effect of aging on gait parameters in able-bodied older subjects: a literature review. Aging Clin Exp Res 28, 393–405 (2016). https://doi.org/10.1007/s40520-015-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0420-6

Keywords

Navigation