Skip to main content
Log in

Entanglement concentration of multi-qubit entangled states: an IBM quantum experience

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

In this work, we have applied the entanglement concentration protocols to partially entangled subsets of classes of highly entangled multi-qubit states, created on IBM quantum computer. The highly entangled multi-qubit states like Z-states and cluster states act as a powerful resource in measurement based computation model. The success of the protocol is analysed through calculating the success probability obtained from the IBM quantum computer and simulator with which the protocol can generate maximally entangled states. The results of the protocol obtained from the IBM simulator are in close agreement with the theoretical predictions of the protocol, however, the results of IBMQ computer show comparative deviations due to large amount of gate errors, qubit errors and readout errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Einstein, A., Rosen, N., Podolsky, B.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, D (1935)

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Sci. Am. 267, 50–57 (1992)

    Article  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein Podolsky Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Menicucci, N. C., Loock, P. V., Gu, M., Weedbrook, C., Ralph, T. C., Nielsen, M. A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quant. Inf. Process. 16, 295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  10. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum enatanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MATH  Google Scholar 

  11. Schlosshauer, M.: Decoherence and the Quantum to Classical Transition. Springer (2007)

  12. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  Google Scholar 

  13. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wooters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  Google Scholar 

  14. Sheng, Y. B., Deng, F. G., Zhou, H. Y.: Single-photon entanglement concentration for long distance quantum communication (2009). arXiv:0907.0050

  15. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  Google Scholar 

  16. Gyongyosi, L., Imre, S.: Entanglement concentration services for quantum internet. Quant. Inf Process 19, 221 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, Z., Yang, T., Shen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement and quantum repeaters. Phys. Rev. Lett. 90, 207901 (2003)

    Article  Google Scholar 

  18. Liu, J., Zhou, L., Zhong, W., Sheng, Y.B.: Logic Bell state concentration with parity check measurement. Front. Phys. 14(2), 21601 (2019)

    Article  Google Scholar 

  19. Shukla, C., Malpani, P., Thapliyal, K.: Hierarchical quantum network using hybrid entanglement. Quant. Inf. Process 20, 121 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Feasible measurement based entanglement purification in linear optics. Opt. Express 29, 9363–9384 (2021)

    Article  Google Scholar 

  21. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  Google Scholar 

  22. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  Google Scholar 

  23. Bandyopadhyay, S.: Qubit-and entanglement -assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)

    Article  Google Scholar 

  24. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  Google Scholar 

  25. Horodecki, P., Horodecki, R.: Distillation and bound entanglement. Quant. Inf. Comp. 1, 45–75 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Chaudhari, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965–3969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two- step entanglement concentration for arbitrary electronic cluster state. Quant. Inf. Process. 12, 3633–3647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gu, Y.-J., Li, W.-D., Guo, G.-C.: Protocols and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)

    Article  Google Scholar 

  29. Zhao, Z., Yang, T., Shen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    Article  Google Scholar 

  30. Chaudhary, B.S., Dhara, A.: An entanglement concentration protocol for Cluster states. Quant. Inf. Process. 12, 2577–2585 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sisodia, M., Shukla, C., Long, G.L.: Linear optics based entanglement concentration protocols for cluster-type entangled coherent state. Quant. Inf. Process. 18, 1–16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Banergee, A., Patel, K., Pathak, A.: Comment on teleportation via GHZ-like state. Int. J. Theor. Phys. 50, 507–510 (2011)

    Article  MATH  Google Scholar 

  33. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)

    Article  Google Scholar 

  34. Kwiat, P.G., Lopez, S.B., Stefanov, A., Gisin, N.: Entanglement distillation andhidden nonlocality. Nature 409, 1014–1017 (2001)

    Article  Google Scholar 

  35. Nielsen, M.A.: Conditions for class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  Google Scholar 

  36. Shukla, C., Banergy, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quant. Inf. Process. 14, 2077–2099 (2015)

    Article  MATH  Google Scholar 

  37. Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n+1)-qubit states. Quant. Inf. Process. 14, 4523–4536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. IBM quantum experience. http://quantumexperience.ng.bluemix.net/qx/exp

  39. Satyajit, S., Srinivasan, K., Bahera, B.K., Panigarhi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quant. Inf. Process. 17, 212 (2018)

    Article  MathSciNet  Google Scholar 

  40. Gangopadhyay, S., Manabputra., Behera, B. K., Panigrahi, P. K.: Generalization and demonstration of entanglement based Deutch–Jozsa-like algorithm using a five-qubit computer. Quant. Inf. Process. 17, 160 (2018)

  41. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quant. Inf. Process. 16, 292 (2017)

    Article  MathSciNet  Google Scholar 

  42. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping to design quantum repeater in IBM quantum computer. Quant. Inf. Process. 18, 108 (2017)

    Article  MATH  Google Scholar 

  43. Anagha, M., Mohan, A., Muruganandan, T., Behera, B. K., Panigrahi, P. K.: A new scheme of teleportation using highly entangled Brown et. al. state using IBM quantum experience. Quant. Inf. Process. 19, 147 (2020)

  44. Pradhan, S., Behera, T. S., Behera, B. K., Panigrahi, P. K.: Simulating quantum synchronization of atomic spin model on ibm Q experience. https://doi.org/10.13140/RG.2.2.22783.15521

  45. Srinivasan, K Satyajit, S., Bahera, B. K., Panigarhi, P. K.: Efficient quantum algorithm for solving the travelling salesman problem: an IBM quantum experience. arXiv:1805.10928

  46. Shenoy, K.S., Sheth, D.Y., Behera, B.K., Panigrahi, P.K.: Demonstration of measurement based adaption based protocol with quantum reinforce learning on IBM Q experience platform. Quant. Inf. Process. 19, 161 (2020)

    Article  MATH  Google Scholar 

  47. Rajiuddin, S.K., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quant. Inf. Process. 19, 87 (2020)

    Article  Google Scholar 

  48. O’Malley, P.J.J., et al.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

    Google Scholar 

  49. Shen, Y., et al.: Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A 95, 020501 (2017)

    Article  Google Scholar 

  50. Dumitrescu, E.F., et al.: Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018)

    Article  Google Scholar 

  51. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

    Article  Google Scholar 

  52. Yordanov, Y.S., Arvidsson-Shukur, D.R.M., Barnes, C.H.W.: Efficient quantum circuits for quantum computational chemistry. Phys. Rev. A 102, 062612 (2020)

    Article  Google Scholar 

  53. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  Google Scholar 

  54. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  MATH  Google Scholar 

  55. Hein, M., Dur, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.-J.: Entanglement in graph states and its applications. arXiv:quant-ph/0602096

  56. Cervera-Lierta, A., Lattore, J.I., Goyeneche, D.: Quantum circuits for maximally entangled states. Phys. Rev. A 100, 022342 (2019)

    Article  MathSciNet  Google Scholar 

  57. McKay, D.C., Sheldon, S., Smolin, J.A., Chow, J.M., Gambetta, J.M.: Three-qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019)

    Article  Google Scholar 

  58. Tannu, S. S., Qureshi, M. K.: Not all qubits are created equal: a case for variability-aware policies for NISQ-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. (987-999) (2019)

  59. Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quant. Inf. Process. 4, 243 (2002)

    Article  MathSciNet  Google Scholar 

  60. Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (2004)

    Article  Google Scholar 

  61. Ozaeta, A., MacMahon, P.L.: Decohrence of upto 8-qubit entangled states in a 16-qubit superconducting quantum processor. Quant. Sci. Technol. 4, 2 (2019)

    Google Scholar 

  62. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  63. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

JR would like to thank the University Grant Commission, New Delhi for providing the financial assistance Junior Research Fellowship vide Ref. No. 20/12/2015(ii)EU-V and IBM Quantum experience for giving access to its various quantum processors. We are also thankful to Pankaj Kumar who helped us in plots and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat Ram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, J., Dutt, D., Dhiman, S.K. et al. Entanglement concentration of multi-qubit entangled states: an IBM quantum experience. Quantum Stud.: Math. Found. 10, 329–342 (2023). https://doi.org/10.1007/s40509-023-00298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-023-00298-0

Keywords

Navigation