Skip to main content
Log in

Minimal quantum walk simulation of Dirac fermions in curved space-times

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

The problem of simulating through quantum walks the curved space-time propagation of Dirac fermions is revisited, taking the \((1 + 1)\)D case as an example. New quantum walks are introduced which encode the space-time geometry, not in the mixing operators, but in new unitary shift operators which carry out a position-dependent translation of the wave function components. These walks simulate Dirac fermions in arbitrary curved space-times and coordinates. Contrary to previously proposed general alternatives, the wave functions of the new walks have as many components as usual Dirac spinors, and not twice that number. In particular, in \((1 + 1)\)D space-times, only one qubit is needed at each lattice point, which makes it easier to perform quantum simulations of the Dirac dynamics on current NISQs quantum devices. Numerical simulations of the Dirac dynamics in the post Newtonian, so-called Gravitoelectromagnetism regime are presented as an illustration. The possible usefulness of the new shift operators and quantum walks in other more general contexts is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill Book Company, Cambridge (1965)

    MATH  Google Scholar 

  2. Schweber, S.S.: Feynman and the visualization of space-time processes. Rev. Mod. Phys. 58, 449 (1986)

    Article  MathSciNet  Google Scholar 

  3. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  Google Scholar 

  4. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40, 142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Manouchehri, K., Wang, J.B.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  8. Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009)

    Article  Google Scholar 

  9. Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Xiao-Qi, Z., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., Obrien, J.L.: Quantum walks of correlated photons. Science 329, 1500 (2010)

    Article  Google Scholar 

  10. Schreiber, A., Cassemiro, K.N., Potocek, V., Gabris, A., Mosley, P., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett 104, 050502 (2010)

    Article  Google Scholar 

  11. Alderete, C.H., Singh, S., Nguyen, N.H., Zhu, D., Balu, R., Monroe, C., Chandrashekhar, C., Linke, N.M.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11, 3720 (2020)

    Article  Google Scholar 

  12. Arnault, P., Debbasch, F.: Quantum walks and discrete gauge theories. Phys. Rev. A 93, 052301 (2016)

    Article  MATH  Google Scholar 

  13. Márquez, I., Arnault, P., Di Molfetta, G., Pérez, A.: Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks. Phys. Rev. A 98, 032333 (2018)

    Article  Google Scholar 

  14. Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 88, 042301 (2013)

    Article  Google Scholar 

  15. Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum Walks in artificial electric and gravitational Fields. Phys. A Stat. Mech. Appl. 397, 157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quantum Inf. Process. 15, 3467 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Arrighi, P., Facchini, S.: Quantum walking in curved spacetime: (3 + 1) dimensions, and beyond. Quantum Inf. Comput. 17, 810 (2017)

    MathSciNet  Google Scholar 

  18. Arnault, P., Debbasch, F.: Quantum walks and gravitational waves. Ann. Phys. 383, 645 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arrighi, P., Di Molfetta, G., Márquez-Martín, I., Pérez, A.: From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks. Sci. Rep. 9(1), 10904 (2019)

    Article  Google Scholar 

  20. Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-Abelian discrete gauge theory. Phys. Rev. A 94, 012335 (2016)

    Article  MathSciNet  Google Scholar 

  21. Debbasch, F.: Discrete geometry from quantum walks. Condens. Matter 4, 40 (2019)

    Article  Google Scholar 

  22. Arrighi, P., Facchini, S., Forets, M.: Discrete Lorentz covariance for quantum walks and quantum cellular automata. New J. Phys. 16, 093007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, Weyl equation and the Lorentz group. Found. Phys. 47, 1065 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Debbasch, F.: Action principles for quantum automata and Lorentz invariance of discrete time quantum walks. Ann. Phys. 405, 340 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Apadula, L., Bisio, A., D’Ariano, G.M., Perinotti, P.: Symmetries of the Dirac quantum walk and emergence of the de Sitter group. J. Math. Phys. 61, 082202 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Debbasch, F.: Quantum walks simulating non-commutative geometry in the Landau problem. J. Math. Phys. 62(6), 062205 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wald, R.M.: Gravitation. University of Chicago Press, Chicago (1984)

    Google Scholar 

  28. Mashhoon, B.: Gravitoelectromagnetism: a brief review. arXiv preprint arXiv:gr-qc/0311030 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Debbasch.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debbasch, F. Minimal quantum walk simulation of Dirac fermions in curved space-times. Quantum Stud.: Math. Found. 10, 317–327 (2023). https://doi.org/10.1007/s40509-023-00297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-023-00297-1

Keywords

Navigation