Skip to main content
Log in

Determinant/permanent division and direct mappings in Fock space

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

The standard mapping between different N-particle states in Fock space is very abstract and consists of combinations of creation and annihilation operators being formally applied to the vacuum state. The resulting formalism provides us with the correct symmetries in the case of fermions and bosons, but the permanents and Slater determinants that are formally joined by the action of these operators must be individually constructed from product states using symmetrizers and antisymmetrizers. Surely, this abstract approach does not correspond to a direct mapping between different N-particle states in Fock space. In the following, we will examine direct mappings in Fock space, which are generalizations of an old determinant division scheme by Schweins (1825). The suggested new scheme is based on a suitable definition of isolated states. We will show that all the classical results obtained by Schweins may be recovered. Furthermore, the new division scheme may easily be extended to permanents. This leads to direct mappings in Fock space, which correspond to creation and annihilation operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Negele, J.W., Orland, H.: Quantum Many-Particle Systems. Addison-Wesley, Reading (1988)

    MATH  Google Scholar 

  2. Nolting, W.: Fundamentals of Many-body Physics: Principles and Methods. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  3. Teller, P.: An Interpretive Introduction to Quantum Field Theory. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  4. Aitken, A.C.: Determinants and Matrices. Oliver and Boyd, Edinburgh (1986)

    MATH  Google Scholar 

  5. Martinez, J.-P.: The Hartree–Fock method: from self-consistency to correct symmetry. Ann. Phys. 529, 1600328 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bohm, A.: Dirac Kets, Gamov Vectors and Gel’fand Triplets. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Mandelstam Institute for Theoretical Physics (MITP), the DST-NRF Centre of Excellence in Strong Materials (CoE-SM) and the ARUA Centre of Excellence in Materials, Energy and Nanotechnology (ARUA CoE-MEN) at the University of the Witwatersrand for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Quandt.

Ethics declarations

Conflict of interest

The author has no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this Appendix, we will show how to work out the brackets of Eqs. (21) and (25). This is a very tedious bookkeeping exercise, and we start our discussion by tackling the first bracket in Eq. (21):

$$\begin{aligned} M_{3}M_{4}^{'}-M_{3}^{'}M_{4}=\det {(h_{1}b_{2}c_{4}})\, \det {(a_{1}b_{2}c_{3}})-\det {(a_{1}b_{2}c_{4}})\det {(h_{1}b_{2}c_{3}}) \end{aligned}$$
(A1)

with the following Laplace expansions:

$$\begin{aligned} \det {(h_{1}b_{2}c_{4})}= & {} h_{1}\det {\left( b_{2}c_{4} \right) }-h_{2}\det {\left( b_{1}c_{4} \right) +h_{4}\det \left( b_{1}c_{2} \right) } ,\nonumber \\ \det {(a_{1}b_{2}c_{3})}= & {} \, a_{1}\det {\left( b_{2}c_{3} \right) }-a_{2}\det {\left( b_{1}c_{3} \right) +a_{3}\det \left( b_{1}c_{2} \right) } ,\nonumber \\ \det {(a_{1}b_{2}c_{4})}= & {} \, a_{1}\det {\left( b_{2}c_{4} \right) }-a_{2}\det {\left( b_{1}c_{4} \right) +a_{4}\det \left( b_{1}c_{2} \right) } ,\nonumber \\ \det {(h_{1}b_{2}c_{3})}= & {} \, h_{1}\det {\left( b_{2}c_{3} \right) }-h_{2}\det {\left( b_{1}c_{3} \right) +h_{3}\det \left( b_{1}c_{2} \right) }. \end{aligned}$$
(A2)

Next, we collect terms according to minors of the determinant \(\det {(h_{1}b_{2}c_{4}})\), which leads to the following result:

$$\begin{aligned}{} & {} M_{3}M_{4}^{'}-M_{3}^{'}M_{4} \nonumber \\{} & {} \quad =\det {\left( b_{2}c_{4} \right) \left\{ \det {\left( h_{1}a_{1} \right) \det {\left( b_{2}c_{3} \right) -\det {\left( h_{1}a_{2} \right) \det {\left( b_{1}c_{3} \right) +\det {\left( h_{1}a_{3} \right) \det \left( b_{1}c_{2} \right) }}}}} \right\} } \nonumber \\{} & {} \qquad -\det {\left( b_{1}c_{4} \right) \left\{ \det {\left( h_{2}a_{1} \right) \det {\left( b_{2}c_{3} \right) -\det {\left( h_{2}a_{2} \right) \det {\left( b_{1}c_{3} \right) +\det {\left( h_{2}a_{3} \right) \det \left( b_{1}c_{2} \right) }}}}} \right\} } \nonumber \\{} & {} \qquad + \det {\left( b_{1}c_{2} \right) \left\{ \det {\left( h_{4}a_{1} \right) \det {\left( b_{2}c_{3} \right) -\det {\left( h_{4}a_{2} \right) \det {\left( b_{1}c_{3} \right) +\det {\left( h_{4}a_{3} \right) \det \left( b_{1}c_{2} \right) }}}}} \right\} } \nonumber \\{} & {} \quad =\det \left( b_{2}c_{4} \right) \det {\left( \det {\left( h_{1}a_{1} \right) b_{2}c_{3}} \right) -}\det \left( b_{1}c_{4} \right) \det \left( \det {\left( h_{2}a_{1} \right) b_{2}c_{3}} \right) \nonumber \\{} & {} \qquad +\, \det \left( b_{1}c_{2} \right) \det {\left( \det {\left( h_{4}a_{1} \right) b_{2}c_{3}} \right) =\, A_{1}\det {\left( b_{2}c_{4} \right) -A_{2}\det {\left( b_{1}c_{4} \right) +A_{4}\det \left( b_{1}c_{2} \right) }}}. \end{aligned}$$
(A3)

From the definitions of the \(A_{i}\) in Eq. (17), we further note that \(\det {\left( h_{1}a_{1} \right) =\det {\left( {\begin{array}{*{20}c} h_{1} &{} h_{1}\\ a_{1} &{} a_{1}\\ \end{array} } \right) =0}}\), and that \(\det {\left( h_{2}a_{2} \right) =0.\, }\) On the other hand, we also find that \(\det {\left( h_{1}a_{2} \right) =\det {\left( {\begin{array}{*{20}c} h_{1} &{} h_{2}\\ a_{1} &{} a_{2}\\ \end{array} } \right) =}}\, h_{1}a_{2}-h_{2}a_{1}\).

The other brackets in Eq. (21) may be worked out in a similar fashion, and those results may be summarized as follows:

$$\begin{aligned} M_{3}M_{4}^{'}-M_{3}^{'}M_{4}= & {} A_{1}\det {\left( b_{2}c_{4} \right) -A_{2}\det {\left( b_{1}c_{4} \right) +A_{4}\det \left( b_{1}c_{2} \right) }} ,\nonumber \\ M_{2}M_{4}^{'}-M_{2}^{'}M_{4}= & {} A_{1}\det {\left( b_{3}c_{4} \right) -A_{3}\det {\left( b_{1}c_{4} \right) +A_{4}\det \left( b_{1}c_{3} \right) }} ,\nonumber \\ M_{3}M_{4}^{'}-M_{3}^{'}M_{4}= & {} A_{2}\det {\left( b_{3}c_{4} \right) -A_{3}\det {\left( b_{2}c_{4} \right) +A_{4}\det \left( b_{2}c_{3} \right) }}. \end{aligned}$$
(A4)

To work out the brackets for the permanents in Eq. (25), we will proceed in the same fashion as we did for the determinants in this section. The first bracket in Eq. (25) was:

$$\begin{aligned} L_{3}L_{4}^{'}-L_{3}^{'}L_{4}=\text {perm}~{(h_{1}b_{2}c_{4}})\, \text {perm}~{(a_{1}b_{2}c_{3}})-\text {perm}~{(a_{1}b_{2}c_{4})} \text {perm}~{(h_{1}b_{2}c_{3}}) \end{aligned}$$
(A5)

and it involved the following Laplace expansions:

$$\begin{aligned} \text {perm}~{(h_{1}b_{2}c_{4}})= & {} h_{1}\text { perm}~{\left( b_{2}c_{4} \right) }+h_{2}\text { perm}~{\left( b_{1}c_{4} \right) +h_{4}\text { perm}~\left( b_{1}c_{2} \right) } ,\nonumber \\ \text {perm}~{(a_{1}b_{2}c_{3}})= & {} \, a_{1}\, \text { perm}~{\left( b_{2}c_{3} \right) }+a_{2}\text { perm}~{\left( b_{1}c_{3} \right) +a_{3}\text { perm}~\left( b_{1}c_{2} \right) } ,\nonumber \\ \text {perm}~{(a_{1}b_{2}c_{4}})= & {} \, a_{1}\, \text { perm}~{\left( b_{2}c_{4} \right) }+a_{2}\text { perm}~{\left( b_{1}c_{4} \right) +a_{4}\text { perm}~\left( b_{1}c_{2} \right) } ,\nonumber \\ \text {perm}~{(h_{1}b_{2}c_{3}})= & {} \, h_{1\, }\text { perm}~{\left( b_{2}c_{3} \right) }+h_{2}\text { perm}~{\left( b_{1}c_{3} \right) +h_{3}\text { perm}~\left( b_{1}c_{2} \right) }. \end{aligned}$$
(A6)

Once again, we start to collect terms according to the minors of the permanent \(\text {perm}~{(h_{1}b_{2}c_{4}})\), which leads us to the following result:

$$\begin{aligned}{} & {} L_{3}L_{4}^{'}-L_{3}^{'}L_{4} \nonumber \\{} & {} \quad =\text {perm}~{\left( b_{2}c_{4} \right) \left\{ \det {\left( h_{1}a_{1} \right) \text {perm}~{\left( b_{2}c_{3} \right) +\det {\left( h_{1}a_{2} \right) \text {perm}~{\left( b_{1}c_{3} \right) +\det {\left( h_{1}a_{3} \right) \text {perm}~\left( b_{1}c_{2} \right) }}}}} \right\} } \nonumber \\{} & {} \qquad +\,\text {perm}~{\left( b_{1}c_{4} \right) \left\{ \det {\left( h_{2}a_{1} \right) \text {perm}~{\left( b_{2}c_{3} \right) +\det {\left( h_{2}a_{2} \right) \text {perm}~{\left( b_{1}c_{3} \right) +\det {\left( h_{2}a_{3} \right) \text {perm}~\left( b_{1}c_{2} \right) }}}}} \right\} } \nonumber \\{} & {} \qquad +\,\text {perm}~{\left( b_{1}c_{2} \right) \left\{ \det {\left( h_{4}a_{1} \right) \text {perm}~{\left( b_{2}c_{3} \right) +\det {\left( h_{4}a_{2} \right) \text {perm}~{\left( b_{1}c_{3} \right) +\det {\left( h_{4}a_{3} \right) \text {perm}~\left( b_{1}c_{2} \right) }}}}} \right\} } \nonumber \\{} & {} \quad =\text {perm}~\left( b_{2}c_{4} \right) \text {perm}~{\left( \det {\left( h_{1}a_{1} \right) b_{2}c_{3}} \right) }+\text {perm}~\left( b_{1}c_{4} \right) \text {perm}~\left( \det {\left( h_{2}a_{1} \right) b_{2}c_{3}} \right) \nonumber \\{} & {} \qquad +\,\text {perm}~\left( b_{1}c_{2} \right) \text {perm}~{\left( \det {\left( h_{4}a_{1} \right) b_{2}c_{3}} \right) =\, B_{1}~\text {perm}~{\left( b_{2}c_{4} \right) +B_{2}~\text {perm}~{\left( b_{1}c_{4} \right) +B_{4}~\text {perm}~\left( b_{1}c_{2} \right) }}}. \end{aligned}$$
(A7)

The final results of Eq. (A7) are based on the definitions of the \(B_{i}\) from Eq. (18). The other brackets in Eq. (25) can be worked out in a similar fashion, and those results may be summarized as follows:

$$\begin{aligned} L_{3}L_{4}^{'}-L_{3}^{'}L_{4}= & {} B_{1}~\text {perm}~{\left( b_{2}c_{4} \right) }+B_{2}~\text {perm}~{\left( b_{1}c_{4} \right) }+B_{4}~\text {perm}~{\left( b_{1}c_{2} \right) } ,\nonumber \\ L_{2}L_{4}^{'}-L_{2}^{'}L_{4}= & {} B_{1}~\text {perm}~{\left( b_{3}c_{4} \right) }+B_{3}~\text {perm}~{\left( b_{1}c_{4} \right) }+B_{4}~\text {perm}~{\left( b_{1}c_{3} \right) } ,\nonumber \\ L_{3}L_{4}^{'}-L_{3}^{'}L_{4}= & {} B_{2}~\text {perm}~{\left( b_{3}c_{4} \right) }+B_{3}~\text {perm}~{\left( b_{2}c_{4} \right) }+B_{4}~\text {perm}~{\left( b_{2}c_{3} \right) }. \end{aligned}$$
(A8)

Appendix B

In this Appendix, we will point out a very particular property of the Schweinsian division schemes and of our general division scheme for determinants and permanents, which Aitken calls the extra shutter property [4]. We will see that from the comparison of different division schemes for determinants and permanents of dimensions 1–4, we may easily derive the corresponding division schemes for all higher dimensions, simply by systematically extending all terms lower-dimensional division schemes!

This extra shutter property may look like a conjecture rather than a sound mathematical result, which is based an elegant mathematic proof. We nevertheless think that for readers with a background in physics rather than in mathematics, this Appendix will allow for a very intuitive approach to the various expansion schemes, which might be more useful than a difficult mathematical proof.

Let us now start with the first Schweinsian expansion, where we list results for dimensions 1–4 in the form of divisions with remainder:

  1. 1.

    \(N=1\) (trivial):

    $$\begin{aligned} h_{1}=\frac{h_{1}}{a_{1}}a_{1}. \end{aligned}$$
    (B1)
  2. 2.

    \(N=2:\)

    $$\begin{aligned} \det \left( h_{1}b_{2} \right) =\frac{h_{1}}{a_{1}}\det \left( a_{1}b_{2} \right) +\det \left( h_{1}a_{2} \right) \, \frac{b_{1}}{a_{1}}. \end{aligned}$$
    (B2)
  3. 3.

    \(N=3:\)

$$\begin{aligned} \det \left( h_{1}b_{2}c_{3} \right) =\left( \frac{h_{1}}{a_{1}}+\frac{\det \left( h_{1}a_{2} \right) }{\det \left( a_{1}b_{2} \right) }\, \frac{b_{1}}{a_{1}} \right) \det \left( a_{1}b_{2}c_{3} \right) +\det \left( h_{1}a_{2}b_{3} \right) \frac{\det \left( b_{1}c_{2} \right) }{\det \left( a_{1}b_{2} \right) }. \end{aligned}$$

Or:

$$\begin{aligned} \det \left( h_{1}b_{2}c_{3} \right) =\frac{\det \left( h_{1}b_{2} \right) }{\det \left( a_{1}b_{2} \right) }\det \left( a_{1}b_{2}c_{3} \right) +\det \left( h_{1}a_{2}b_{3} \right) \frac{\det \left( b_{1}c_{2} \right) }{\det \left( a_{1}b_{2} \right) }. \end{aligned}$$
(B3)
  1. 4.

    \(N=4:\)

$$\begin{aligned}{} & {} \det \left( h_{1}b_{2}c_{3}d_{4} \right) =\left( \frac{h_{1}}{a_{1}}+\frac{\det \left( h_{1}a_{2} \right) }{\det \left( a_{1}b_{2} \right) }\, \frac{b_{1}}{a_{1}}+\frac{\det \left( h_{1}a_{2}b_{3} \right) }{\det \left( a_{1}b_{2}c_{3} \right) }\frac{\det \left( b_{1}c_{2} \right) }{\det \left( a_{1}b_{2} \right) } \right) \det \left( a_{1}b_{2}c_{3}d_{4} \right) \\{} & {} \quad +\det \left( h_{1}a_{2}b_{3}c_{4} \right) \frac{\det \left( b_{1}c_{2}d_{3} \right) }{\det \left( a_{1}b_{2}c_{3} \right) }. \end{aligned}$$

Or:

$$\begin{aligned} \det \left( h_{1}b_{2}c_{3}d_{4} \right) =\frac{\det \left( h_{1}b_{2}c_{3} \right) }{\det \left( a_{1}b_{2}c_{3} \right) }\det \left( a_{1}b_{2}c_{3}d_{4} \right) +\det \left( h_{1}a_{2}b_{3}c_{4} \right) \frac{\det \left( b_{1}c_{2}d_{3} \right) }{\det \left( a_{1}b_{2}c_{3} \right) }. \end{aligned}$$
(B4)

Next, we list the second Schweinsian expansions of dimensions 1–4:

  1. 1.

    \(N=1\) (trivial):    

    $$\begin{aligned} a_{1}=a_{1}\cdot 1. \end{aligned}$$
    (B5)
  2. 2.

    \(N=2:\)    

    $$\begin{aligned} \det \left( a_{1}b_{2} \right) ={\left( a_{1}-\, \frac{a_{2}b_{1}}{b_{2}} \right) }b_{2}=a_{1}b_{2}-a_{2}b_{1}. \end{aligned}$$
    (B6)
  3. 3.

    \(N=3:\)    

    $$\begin{aligned} \det \left( a_{1}b_{2}c_{3} \right) =\left( a_{1}-\, \frac{a_{2}b_{1}}{b_{2}}-\frac{\det \left( a_{2}b_{3} \right) }{b_{2}}\, \frac{\det \left( b_{1}c_{2} \right) }{\det \left( b_{2}c_{3} \right) } \right) \det \left( b_{2}c_{3} \right) . \end{aligned}$$

Or:

$$\begin{aligned} \det \left( a_{1}b_{2}c_{3} \right) =\frac{\det \left( a_{1}b_{2} \right) }{b_{2}}\det \left( b_{2}c_{3} \right) -\frac{\det \left( a_{2}b_{3} \right) }{b_{2}}\, \det \left( b_{1}c_{2} \right) . \end{aligned}$$
(B7)
  1. 4.

    \(N=4:\)

$$\begin{aligned}{} & {} \det \left( a_{1}b_{2}c_{3}d_{4} \right) =\left( a_{1}-\, \frac{a_{2}b_{1}}{b_{2}}-\frac{\det \left( a_{2}b_{3} \right) }{b_{2}}\, \frac{\det \left( b_{1}c_{2} \right) }{\det \left( b_{2}c_{3} \right) }-\frac{\det \left( a_{2}b_{3}c_{4} \right) }{\det \left( b_{2}c_{3} \right) }\, \frac{\det \left( b_{1}c_{2}d_{3} \right) }{\det \left( b_{2}c_{3}d_{4} \right) } \right) \\{} & {} \quad \cdot \det \left( b_{2}c_{3}d_{4} \right) . \end{aligned}$$

Or:

$$\begin{aligned} \det \left( a_{1}b_{2}c_{3}d_{4} \right) =\frac{\det \left( a_{1}b_{2}c_{3} \right) }{\det \left( b_{2}c_{3} \right) }\det \left( b_{2}c_{3}d_{4} \right) -\frac{\det \left( a_{2}b_{3}c_{4} \right) }{\det \left( b_{2}c_{3} \right) }\, \det \left( b_{1}c_{2}d_{3} \right) . \end{aligned}$$
(B8)

Now, we come to our general expansion scheme for determinants of dimensions 1–4:

  1. 1.

    \(N=1:\)    

    $$\begin{aligned} h_{1}=\frac{h_{1}}{a_{1}}a_{1}+A_{1}=\frac{h_{1}}{a_{1}}a_{1} \quad \text {as } A_{1}=0. \end{aligned}$$
    (B9)
  2. 2.

    \(N=2:\)

    $$\begin{aligned} \det \left( h_{1}b_{2} \right) =\frac{h_{1}}{a_{1}}\det \left( a_{1}b_{2} \right) +\frac{\det {(A_{1}0)}}{a_{1}} \end{aligned}$$

with:

$$\begin{aligned} \det {(A_{1}0)}=\det \left( {\begin{array}{*{20}c} A_{1} &{} A_{2}\\ b_{1} &{} 0\\ \end{array} } \right) . \end{aligned}$$
(B10)
  1. 3.

    \(N=3:\)    

    $$\begin{aligned} \det \left( h_{1}b_{2}c_{3} \right) =\frac{\det \left( h_{1}b_{2} \right) }{\det \left( a_{1}b_{2} \right) }\det \left( a_{1}b_{2}c_{3} \right) +\frac{\det {(A_{1}b_{2}0)}}{\det \left( a_{1}b_{2} \right) } \end{aligned}$$

with:

$$\begin{aligned} \det {(A_{1}b_{2}0)}=\det \left( {\begin{array}{*{20}c} A_{1} &{} A_{2} &{} A_{3}\\ b_{1} &{} b_{2} &{} b_{3}\\ c_{1} &{} c_{2} &{} 0\\ \end{array} } \right) . \end{aligned}$$
(B11)
  1. 4.

    \(N=4:\)    

    $$\begin{aligned} \det \left( h_{1}b_{2}c_{3}d_{4} \right) =\frac{\det \left( h_{1}b_{2}c_{3} \right) }{\det \left( a_{1}b_{2}c_{3} \right) }\det \left( a_{1}b_{2}c_{3}d_{4} \right) +\frac{\det {(A_{1}b_{2}c_{3}0)}}{\det \left( a_{1}b_{2}c_{3} \right) } \end{aligned}$$

with:

$$\begin{aligned} \det {(A_{1}b_{2}c_{3}0)}=\det \left( {\begin{array}{*{20}c} A_{1} &{} A_{2} &{} {\begin{array}{*{20}c} A_{3} &{} A_{4}\\ \end{array} }\\ b_{1} &{} b_{2} &{} {\begin{array}{*{20}c} b_{3} &{} b_{4}\\ \end{array} }\\ {\begin{array}{*{20}c} c_{1}\\ d_{1}\\ \end{array} } &{} {\begin{array}{*{20}c} c_{2}\\ d_{2}\\ \end{array} } &{} {\begin{array}{*{20}c} {\begin{array}{*{20}c} c_{3}\\ d_{3}\\ \end{array} } &{} {\begin{array}{*{20}c} c_{4}\\ 0\\ \end{array} }\\ \end{array} }\\ \end{array} } \right) . \end{aligned}$$
(B12)

The meaning of the \(A_{i}\) is the same as in Eq. (17).

Last but not least, we also list our general expansion scheme for permanents of dimensions 1–4:

  1. 1.

    \(N=1:\)    

    $$\begin{aligned} h_{1}=\frac{h_{1}}{a_{1}}a_{1}+B_{1}=\frac{h_{1}}{a_{1}}a_{1}\quad \text {as }B_{1}=0. \end{aligned}$$
    (B13)
  2. 2.

    \(N=2:\)    

    $$\begin{aligned} \text {perm}\left( h_{1}b_{2} \right) =\frac{h_{1}}{a_{1}}\text {perm}\left( a_{1}b_{2} \right) +\frac{\text {perm}~{(B_{1}0)}}{a_{1}} \end{aligned}$$

with:

$$\begin{aligned} \text {perm}~{(B_{1}0)}=\text {perm}\left( {\begin{array}{*{20}c} B_{1} &{} B_{2}\\ b_{1} &{} 0\\ \end{array} } \right) . \end{aligned}$$
(B14)
  1. 3.

    \(N=3:\)    

    $$\begin{aligned} \text {perm}\left( h_{1}b_{2}c_{3} \right) =\frac{\text {perm}~\left( h_{1}b_{2} \right) }{\text {perm}\left( a_{1}b_{2} \right) }\text {perm}\left( a_{1}b_{2}c_{3} \right) +\frac{\text {perm}~{(B_{1}b_{2}0)}}{\text {perm}\left( a_{1}b_{2} \right) } \end{aligned}$$

with:

$$\begin{aligned} \text {perm}~{(B_{1}b_{2}0)}=\text {perm}\left( {\begin{array}{*{20}c} B_{1} &{} B_{2} &{} B_{3}\\ b_{1} &{} b_{2} &{} b_{3}\\ c_{1} &{} c_{2} &{} 0\\ \end{array} } \right) . \end{aligned}$$
(B15)
  1. 4.

    \(N=4:\)    

    $$\begin{aligned} \text {perm}\left( h_{1}b_{2}c_{3}d_{4} \right) =\frac{\text {perm}\left( h_{1}b_{2}c_{3} \right) }{\text {perm}\left( a_{1}b_{2}c_{3} \right) }\text {perm}\left( a_{1}b_{2}c_{3}d_{4} \right) +\frac{\text {perm}~{(B_{1}b_{2}c_{3}0)}}{\text {perm}\left( a_{1}b_{2}c_{3} \right) } \end{aligned}$$

with:

$$\begin{aligned} \text {perm}~{(B_{1}b_{2}c_{3}0)}=\text {perm}\left( {\begin{array}{*{20}c} B_{1} &{} B_{2} &{} {\begin{array}{*{20}c} B_{3} &{} B_{4}\\ \end{array} }\\ b_{1} &{} b_{2} &{} {\begin{array}{*{20}c} b_{3} &{} b_{4}\\ \end{array} }\\ {\begin{array}{*{20}c} c_{1}\\ d_{1}\\ \end{array} } &{} {\begin{array}{*{20}c} c_{2}\\ d_{2}\\ \end{array} } &{} {\begin{array}{*{20}c} {\begin{array}{*{20}c} c_{3}\\ d_{3}\\ \end{array} } &{} {\begin{array}{*{20}c} c_{4}\\ 0\\ \end{array} }\\ \end{array} }\\ \end{array} } \right) . \end{aligned}$$
(B16)

The meaning of the \(B_{i}\) is the same as in Eq. (18).

Finally, we would like to remark that Aitken gives a mathematical proof of the two Schweinsian division schemes [4]. Furthermore, the key ideas behind our general division scheme are so simple and so general, that they also hold in any dimension. The procedure is always the same: first use a Laplace expansion of the two determinants or the two permanents, which are the denominators and the numerators of a given division scheme. Then apply a division scheme with remainder and carry out a systematic re-ordering of terms, and finally arrive at more compact expressions like the ones itemized above.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quandt, A. Determinant/permanent division and direct mappings in Fock space. Quantum Stud.: Math. Found. 10, 161–176 (2023). https://doi.org/10.1007/s40509-022-00287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-022-00287-9

Keywords

Navigation