Skip to main content
Log in

A classical probability space exists for the measurement theory based on the truth values

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

Recently, a new measurement theory based on the truth values is proposed [38]. The results of measurements are either 0 or 1. The measurement theory accepts a hidden variable model for a single Pauli observable. Therefore, we can introduce a classical probability space for the measurement theory. Our discussion provides new insight to formulate quantum measurement theory based on the truth values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  2. Sakurai, J.J.: Modern quantum mechanics. Addison-Wesley Publishing Company, Reading (1995)

    Google Scholar 

  3. Peres, A.: Quantum theory: concepts and methods. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  4. Redhead, M.: Incompleteness, nonlocality, and realism, 2nd edn. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on physics, volume III. Quantum mechanics. Addison-Wesley Publishing Company, Reading (1965)

    MATH  Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  Google Scholar 

  8. Bell, J. S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

  9. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s theorem, quantum theory and conceptions of the universe. In: Kafatos, M. (ed.) Going beyond Bell’s theorem, pp. 69–72. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  11. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pagonis, C., Redhead, M.L.G., Clifton, R.K.: The breakdown of quantum non-locality in the classical limit. Phys. Lett. A 155, 441 (1991)

    Article  MathSciNet  Google Scholar 

  13. Mermin, N.D.: What’s wrong with these elements of reality? Phys. Today 43(6), 9 (1990)

    Article  Google Scholar 

  14. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990)

    Article  MathSciNet  Google Scholar 

  15. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107 (1990)

    Article  MathSciNet  Google Scholar 

  16. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leggett, A.J.: Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem. Found. Phys. 33, 1469 (2003)

    Article  MathSciNet  Google Scholar 

  18. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature (London) 446, 871 (2007)

    Article  Google Scholar 

  19. Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental test of non-local realistic theories without the rotational symmetry assumption. Phys. Rev. Lett. 99, 210406 (2007)

    Article  Google Scholar 

  20. Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Scarani, V.: Experimental falsification of Leggett’s nonlocal variable model. Phys. Rev. Lett. 99, 210407 (2007)

    Article  Google Scholar 

  21. Suarez, A.: Nonlocal “Realistic” Leggett models can be considered refuted by the before–before experiment. Found. Phys. 38, 583 (2008)

    Article  Google Scholar 

  22. Żukowski, M.: Comment on: Nonlocal “Realistic” Leggett models can be considered refuted by the before-before experiment. Found. Phys. 38, 1070 (2008)

    Article  Google Scholar 

  23. Suarez, A.: On Bell, Suarez-Scarani, and Leggett experiments: reply to a comment by Marek Zukowski in [Found. Phys. 38:1070, 2008]. Found. Phys. 39, 156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 400, 97 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, J.A., Mosca, M.: Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648 (1998)

    Article  Google Scholar 

  27. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature (London) 421, 48 (2003)

    Article  Google Scholar 

  28. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B. Quantum Semiclass. Opt. 7, 288–292 (2005)

    Article  Google Scholar 

  29. Kim, Y.-H.: Single-photon two-qubit entangled states: preparation and measurement. Phys. Rev. A 67, 040301(R) (2003)

    Article  MathSciNet  Google Scholar 

  30. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003)

    Article  Google Scholar 

  31. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Experimental realization of Deutsch’s algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bernstein, E., Vazirani, U.: Quantum complexity theory. Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20 (1993). doi:10.1145/167088.167097

  33. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simon, D. R.: Foundations of computer science (1994) Proceedings. 35th Annual Symposium, pp: 116-123. Accessed 6 June 2011. (1994)

  35. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Implementation of a quantum algorithm to solve the Bernstein–Vazirani parity problem without entanglement on an ensemble quantum computer. Phys. Rev. A 64, 042306 (2001)

    Article  Google Scholar 

  36. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, Ph, Haelterman, M., Massar, S.: Fiber-optics implementation of the Deutsch–Jozsa and Bernstein–Vazirani quantum algorithms with three qubits. Phys. Rev. Lett. 90, 157902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, H., Yang, L.: A quantum algorithm for approximating the influences of Boolean functions and its applications. Quantum Inf. Process 14, 1787 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nagata, K., Nakamura, T.: Measurement theory in Deutsch’s algorithm based on the truth values. Int. J. Theor. Phys. 55, 3616 (2016). doi:10.1007/s10773-016-2990-2

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T. A classical probability space exists for the measurement theory based on the truth values. Quantum Stud.: Math. Found. 4, 7–11 (2017). https://doi.org/10.1007/s40509-016-0083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-016-0083-9

Keywords

Navigation