Skip to main content
Log in

Physiological changes in lupine plants in response to salt stress and nitric oxide signal

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Elevated concentrations of salt induce ionic and osmotic stress, hindering plant development and growth through impairing various crucial metabolic functions. The current study was conducted to fathom how nitric oxide (NO) induces salinity stress tolerance in Lupinus termis L. plants. Varying concentrations of sodium chloride (0.0, 75 and 150 mM) were introduced to plants with/without supplementation of NO (in the form of sodium nitroprusside, 0.4 and 0.6 mM) to detect the associated metabolomic changes. Growth parameters, oxidative markers (lipid peroxidation, H2O2, and electrolyte leakage), photosynthetic pigments, phytohormonal content, certain osmoprotectants (organic acids contents, proline, soluble sugars, and polysaccharides), and mineral ions (Na+, Ca2+, K+, Mg2+) were determined in both shoots and roots. NO exogenous application significantly diminished the salinity-induced oxidative stress and alleviated salt’s inhibitory effect on lupine growth and photosynthetic pigment content. The most effective SNP (sodium nitroprusside) concentration in boosting salt stress tolerance in lupine was 0.4 mM. This could be correlated to the found upregulation of osmoprotectant molecules including soluble sugars, polysaccharides, and organic acids, namely malic, succinic, formic, acetic, and butyric acids, besides increased endogenous hormones level. In addition to the increased divalent cations (Ca2+ and Mg2+) content, reduced Na+ intake, and increased K+ influx in lupine plants supplemented with 0.4 mM SNP was evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd-Allah, E. F., Gucel, S., & Tran, L. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00347

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  • Amiri, J., & Eshghi, S. (2015). Ion and mineral concentrations in roots and leaves of two grapevine cultivars as affected by nitric oxide foliar application under NaCl stress. Journal International Des Sciences De La Vigne, 49, 155–164.

    CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Waheed, A. (1990). Screening of local exotic accensions of lentil (Lens culinaris) for salt tolerance at two growth stages. Plant and Soil, 128, 167–176.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bonab, R. B., Saadatmand, S., Nazemiyeh, H., & Bakhsh, A. R. I. (2015). Alleviation effects of nitric oxide on the growth rate and photosynthetic pigments and reducing sugar content in NaCl-stressed coriander (Coriandrumsativum L.). Journal of Applied Environmental and Biological Sciences, 5, 577–585.

    Google Scholar 

  • Chen, F., Wang, F., Sun, H. Y., Cai, Y., Mao, W. H., Zhang, G. P., Vincze, E., & Wu, F. B. (2010). Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). Journal of Plant Growth Regulation, 29, 394–408.

    Article  CAS  Google Scholar 

  • Chen, J., Xiong, D. Y., Wang, W. H., Hu, W. J., Simon, M., Xiao, Q., et al. (2013). Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS ONE, 8, e71543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford, N. M., & Guo, F. Q. (2005). New insights into nitric oxide metabolism and regulatory functions. Trends in Plant Science, 10, 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Debez, A., Chaibi, W., & Bouzid, S. (2001). Effect du NaCl et de regulatoeurs de croissance sur la germination d’ Atriplex halimus L. Cahiers Agricultures, 10, 135–138.

    Google Scholar 

  • Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1–9.

    Article  CAS  Google Scholar 

  • Esmail, N. Y., Hashem, H. A., & Hassanein, A. A. (2018). Effect of treatment with different concentrations of sodium nitroprusside on survival, germination, growth, photosynthetic pigments and endogenous nitric oxide content of Lupines termis L. Plants. Acta Scientific Agriculture, 25, 48–52.

    Google Scholar 

  • Fan, H., Guo, S., Jiao, Y., Zhang, R., & Li, J. (2007). Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China, 1, 308–314.

    Article  Google Scholar 

  • Farooq, M., Basra, S. M. A., Wahid, A., & Rehman, H. (2009). Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 195, 254–261. https://doi.org/10.1111/j.1439-037X.2009.00367.x

    Article  CAS  Google Scholar 

  • Fatma, M., Masood, A., Per, T. S., & Khan, N. A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic response by interacting with sulfur assimilation in mustard. Frontiers in Plant Science, 7, 521. https://doi.org/10.3389/fpls.2016.00521

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, J., Wang, C., Chen, Q., Chen, H., Ren, B., Li, X., & Zuo, J. (2013). S-nitrosylation of phosphotransferase proteins represses cytokinin signaling. Nature Communications, 4, 1529. https://doi.org/10.1038/ncomms2541

    Article  CAS  PubMed  Google Scholar 

  • Floryszak-Wieczorek, J., Arasimowicz, M., Milczarek, G., Jelen, H., & Jackowiak, H. (2007). Only an early nitric oxide burst, and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytologist, 175, 718–730.

    Article  CAS  PubMed  Google Scholar 

  • Ford, C. W., & Wilson, J. R. (1981). Changes in levels of solutes during osmotic adjustment to water stress in leaves of four tropical pasture species. Australian Journal of Plant Physiology, 8(1), 77–91.

    CAS  Google Scholar 

  • Freschi, L. (2013). Nitric oxide and phytohormone interactions: Current status and perspectives. Frontiers in Plant Science, 4, 398. https://doi.org/10.3389/fpls.2013.00398

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Mata, C., & Lamattina, L. (2002). Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology, 128, 790–792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa, P., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Reviews of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  • Hashem, H. A. (2006) Physiological and molecular actions of jasmonic acid on soybean plant. Ph.D. Thesis, Faculty of Science, Ain Shams University, Cairo, Egypt.

  • Hashem, H. A., Hassanein, A. A., & Esmail, N. Y. (2018). Nitric oxide enhances the adaptive responses of lupine plants against heavy-metal stress. Australian Journal of Crop Science, 12(12), 1962–1974.

    Article  CAS  Google Scholar 

  • Hayat, S., Mori, M., Pichtel, J., & Ahmad, A. (2010). Nitric oxide in plant physiology. Wiley Blackwell.

    Google Scholar 

  • Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Homme, P. M., Gonalez, B., & Billard, J. (1992). Carbohydrate content, frutane and sucrose enzyme activities in roots, stubble and leaves of ryegrass (Lolium perenne L.) as affected by sources/link modification after cutting. Journal of Plant Physiology, 140, 282–291.

    Article  Google Scholar 

  • Hyang, L. E., Dae, K. H., & Seung, K. L. (2009). Nitric oxide reduced chlorophyll degradation in broccoli (Brassica oleracea L. var. italica) florets during senescence. Food Science and Technology International, 15, 223–228.

    Article  Google Scholar 

  • Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy, S. A., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5, 726–734.

    CAS  Google Scholar 

  • Keyster, M., Klein, A., & Ludidi, N. (2012). Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signaling & Behavior, 7, 349–360.

    Article  CAS  Google Scholar 

  • Kopyra, M., & Gwozdz, E. A. (2004). The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiologia Plantarum, 26, 459–472.

    Article  CAS  Google Scholar 

  • Kramell, R.(1996). HPLC separation of jasmonic acid methyl ester enantiomers. Phytochemical analysis, 7, 738–743.

    Google Scholar 

  • Leon, J., & Lozano-Juste, J. (2011). Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiology, 156, 1410–1423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Q. Y., Niu, H. B., Yin, J., Wang, M. B., Shao, H. B., Deng, D. Z., Chen, X. X., Ren, J. P., & Li, Y. C. (2008). Protective role of exogenous nitric oxide against oxidative stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surface B., 65, 220–225.

    Article  CAS  Google Scholar 

  • Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H., & Ding, R. X. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160, 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, M. M., Stoddard, F. L., Annicchiarico, P., Frias, J., Martinez-Villaluenga, C., & Sussmann, D. (2015). The future of lupin as a protein crop in Europe. Frontiers in Plant Science, 6, 705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139–158.

    Article  CAS  PubMed  Google Scholar 

  • Manai, J., Zaghdoud, C., Debouba, M., Donia, H. G. & Bouthour (2012). Role of nitric oxide in saline stress: Implications on nitrogen metabolism. African Journal of Plant Science, 6, 376–382.

  • Mangano, S., Silberstein, S., & Santa-María, G. E. (2008). Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress. FEBS Letters, 582, 3922–3928.

    Article  CAS  PubMed  Google Scholar 

  • Marounek, M., Skřivanova, E., & Skřivanova, V. (2006). Selenium content and antioxidant status in tissues of veal calves fed a diet supplemented with selenium yeast. Slovak Journal of Animal Science, 39, 51–54.

    Google Scholar 

  • Metzner, H., Rau, H., & Senger, H. (1965). Studies on the synchronisability of individual pigment deficient mutants of Chlorella. Planta, 65, 186–194.

    Article  CAS  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Pantin, F., Renaud, J., Barbier, F., Vavasseur, A., Le Thiec, D., Rose, C., Bariac, T., Casson, S., McLachlan, D.H., Hetherington, A.M., Muller, B., & Simonneau, T. (2013). Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. Current Biology, 23(18), 1805–11. https://doi.org/10.1016/j.cub.2013.07.050.

    Article  CAS  PubMed  Google Scholar 

  • Plustea, L., Negrea, M., Cocan, I., Radulov, I., Tulcan, C., Berbecea, A., Popescu, I., Obistioiu, D., Hotea, I., Suster, G., Boeriu, A. E., & Alexa, E. (2022). Lupin (Lupinus spp.)-fortified bread: A sustainable, nutritionally, functionally, and technologically valuable solution for bakery. Foods., 11(14), 2067. https://doi.org/10.3390/foods11142067. PMID: 35885310; PMCID: PMC9316204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova, L., & Tuan, T. (2010). Nitric oxide in plants: Properties, biosynthesis and physiological functions. Iranian Journal of Science and Technology Transactions A, 34, 173–183.

    CAS  Google Scholar 

  • Rains, D. W., Croughan, T. P., & Stavarek, S. J. (1980). Selection of salt-tolerant plants using tissue culture. In D. W. Rains, R. C. Valentine, & A. Hollaender (Eds.), Genetic engineering of osmoregulation. Basic life sciences. (Vol. 14). Boston, MA: Springer. https://doi.org/10.1007/978-1-4684-3725-6_19

    Chapter  Google Scholar 

  • Sakhabutdinova, A. R., Fatkhutdinova, D. R., Bezrukova, M. V., & Shakirova, F. M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant PhysioloGy, 29, 314–319.

    Google Scholar 

  • Sassi, S., Aydi, S., Gonzalez, E. M., Arrese-Igor, C., & Abdelly, C. (2010). Understanding osmotic stress tolerance in leaves and nodules of two Phaseolus vulgaris cultivars with contrasting drought tolerance. Symbiosis, 52(1), 1.

    Article  CAS  Google Scholar 

  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257–279.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A., Kapoor, D., Wnag, J., Landi, M., Zheng, D., Yan, D., & Yuan, H. (2020). Nitric oxide mechanisms adopted by plants to cope with salinity. Biologia Plantarum, 64, 512–518.

    Article  CAS  Google Scholar 

  • Sheokand, S., Bhankar, V., & Sawhney, V. (2010). Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Brazilian Journal of Plant Physiology, 22, 81–90.

    Article  Google Scholar 

  • Shi, Q., Ding, F., Wang, X., & Wei, M. (2007). Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. Plant Physiology and Biochemistry, 45, 542–550.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63, 317–326.

    Article  CAS  Google Scholar 

  • Shindy, W. W., & Smith, O. (1975). Identification of plant hormones from cotton ovules. Plant Physiology, 55, 550–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivritepe, N., Sivritepe, H. O., Celik, H., & Katkat, A. V. (2010). Salinity responses of grafted grapevines: Effects of scion and rootstock genotypes. Notulae Botanicae Horti Agrobotanici Cluj, 38, 193–201.

    Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1980). Statistical Methods (7th ed.). Iowa State University Press.

    Google Scholar 

  • Steuer, R., Nesi, A. N., Fernie, A. R., Gross, T., Blasius, B., & Selbig, J. (2007). From structure to dynamics of metabolic pathways: Application to the plant mitochondrial TCA cycle. Bioinformatics, 23(11), 1378–1385.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., Zhao, H., Hong, J., Han, Y., Li, H., & Zhao, W. (2008). Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World Journal of Agriculture Science, 4, 307–313.

    Google Scholar 

  • Terrile, M. C., Parıś, R., Calderón-Villalobos, L. I. A., Iglesias, M. J., Lamattina, L., Estelle, M., & Casalonque, C. A. (2012). Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis Transport inhibitor response 1 auxin receptor. Plant Journal, 70, 492–500.

    Article  CAS  Google Scholar 

  • Tester, M., & Davenport, M. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503–527. https://doi.org/10.1093/aob/mcg058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida, A., Jagendorf, A. T., Hibino, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163, 515–523.

    Article  CAS  Google Scholar 

  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 17(2), 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, A. J. (1975). A textbook of practical organic chemistry (3rd ed., pp. 483–485). English Language Book Society and Longman Group Ltd.

    Google Scholar 

  • Wang, Y., Mopper, S., & Hasentein, K. H. (2001). Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. Journal of Chemical Ecology, 27, 327–342.

    Article  CAS  PubMed  Google Scholar 

  • Wendehenne, D., Pugin, A., Klessing, D. F., & Durner, J. (2001). Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 6, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Whistler, R. L., Wolform, M. L., BeMiller, J. N. & Shafizadeh, F. (1962): Anthrone colorimetric method. In: Methods in Carbohydrate Chemistry (vol. 1, pp. 384). New York, London: Academic Press.

  • Wodecki, Z., Torlop, B., & Slebioda, M. (1991). Chromatographic determination of citric acid for monitoring the mold process. Journal of Chromatography, 558, 302–305.

    Article  CAS  Google Scholar 

  • Wu, X., Zhu, W., Zhang, H., Ding, H., & Zhang, H. J. (2011). Exogenous nitric oxide protects against salt induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiologia Plantarum, 33, 1199–1209.

    Article  CAS  Google Scholar 

  • Xu, J., Wang, W., Yin, H., Liu, X., Sun, H., & Mi, Q. (2010). Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant and Soil, 326, 321–330.

    Article  CAS  Google Scholar 

  • Yasar, F., Kusvuran, S., & Ellialtıolu, S. (2006). Determination of antioxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. Journal of Horticultural Science and Biotechnology, 81(4), 627–630.

    Article  CAS  Google Scholar 

  • Yin, Y., Li, S., Liao, W., Lu, Q., Wen, X., & Lu, C. (2010). Photosystem II photochemistry, photoinhibition, and the xanthophylls cycle in heat-stressed rice leaves. Journal of Plant Physiology, 167, 959–966.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224, 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B., & Zhang, L. (2004). Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology, 134, 849–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, M. G., Tian, Q. Y., & Zhang, W. H. (2007). Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiology, 144, 206–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Jing, Q., & Cao, W. (2009). Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany, 67, 222–227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan A. Hashem.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, H.A., Esmail, N.Y. & Hassanein, A.A. Physiological changes in lupine plants in response to salt stress and nitric oxide signal. Plant Physiol. Rep. 28, 299–311 (2023). https://doi.org/10.1007/s40502-023-00720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00720-0

Keywords

Navigation