Skip to main content
Log in

Water deficit effects on canopy light interception, chlorophyll fluorescence, and stomatal conductance in Moroccan alfalfa genotypes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Water deficit is the major constraints causing negative effects on forage crops in many regions worldwide especially North Africa. This constraint will aggravate because of climate change in the future. The present study aims to assess several physiological and biochemical parameters in three alfalfa varieties subjected to severe water deficit. Plants were irrigated with 100% ETc (crop evapotranspiration) water amount as well-watered and 50% ETc as water deficit. The results showed that water deficit significantly reduced dry matter (DM), photosynthetically active radiation (PARi), light conversion (ɛb) and electron transport rate in all the studied genotypes. Adis variety had the lowest DM reduction of 22.7% under water stress. Moapa (MO) showed a reduction of 51.5%. The lowest ɛb value of 1.57 kg/µmol m−2 d−1 was observed for MO under water stress. Overall, next to biomass and water uptake, the photosynthetic parameters may constitute additional reliable criteria for the selection of water deficit tolerant variety of alfalfa to support the breeding program by INRA for the Mediterranean well adapted alfalfa varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DM:

Dry matter

Chl:

Chlorophyll

ETc:

Crop evapotranspiration

ETR:

Electron transport rate

ɛb :

Light conversion to biomass

FM:

Fresh matter

Fv/Fm:

Chlorophyll fluorescence

gs :

Stomatal conductance

LA:

Leaf area

PARi:

Intercepted photosynthetically active radiation

PH:

Plant height

RUE:

Radiation use efficiency

TM:

Turgid matter

WP:

Water productivity

WUE:

Water use efficiency

τ:

Transmittance

References

  • Allen, R. G. (2003). Crop coefficients. Encyclopedia of Water Science (pp. 87–90). Marcel Dekker Publishers.

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.

    Google Scholar 

  • Anyia, A. O., & Herzog, H. (2004). Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy, 20(4), 327–339. https://doi.org/10.1016/S1161-0301(03)00038-8

    Article  Google Scholar 

  • Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., & Nogués, S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 62(1), 111–123. https://doi.org/10.1093/jxb/erq249

    Article  CAS  PubMed  Google Scholar 

  • Bandurska, H. J. P. (2022). Drought stress responses: Coping strategy and resistance. Plants, 11(7), 922.

    Article  Google Scholar 

  • Bat-Oyun, T., Shinoda, M., & Tsubo, M. (2012). Effects of water and temperature stresses on radiation use efficiency in a semi-arid grassland. Journal of Plant Interactions, 7(3), 214–224.

    Article  CAS  Google Scholar 

  • Behling, A., Sanquetta, C. R., Dalla Corte, A. P., Caron, B., Arlindo Simon, A., Behling, M., & Schmidt, D. (2015). Conversion efficiency of photosynthetically active radiation intercepted in biomass in stands of black wattle in Brazil. Bosque, 36(1), 61–69.

    Article  Google Scholar 

  • Birouk, A., El Haddioui, M., & Hilali, A. (1990). The collection of lucerne (Medicago sativa) in Morocco. Plant Genetic Resources Newsletter(81–82), 33–35.

  • Bouizgaren, A. (2007). Fiche technique sur la culture de la luzerne au Maroc. technique de production fourragère et semencière.[Technical sheet of alfalfa cultivation in Morocco. Techniques of forage and seed production]. National Institute for Agronomical Research (INRA), Marrakech, Morocco, 5–23.

  • Bouizgaren, A., Farissi, M., Ghoulam, C., Kallida, R., Faghire, M., Barakate, M., & Al Feddy, M. N. (2013). Assessment of summer drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) cultivars under Moroccan fields conditions. Archives of Agronomy and Soil Science, 59(1), 147–160.

    Article  CAS  Google Scholar 

  • Bouizgaren, A., Kallida, R., & Faiz, C. (2010). Evaluation of drought tolerance variability in Mediterranean alfalfa cultivars in the field under Moroccan conditions. In C. Huyghe (Ed.), Sustainable use of genetic diversity in forage and turf breeding (pp. 283–287). Springer.

    Chapter  Google Scholar 

  • Ceotto, E., & Spallacci, P. (2006). Pig slurry applications to alfalfa: Productivity, solar radiation utilization, N and P removal. Field Crops Research, 95(2), 135–155.

    Article  Google Scholar 

  • Chaves, M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  • Collino, D., Dardanelli, J., Sereno, R., & Racca, R. (2001). Physiological responses of argentine peanut varieties to water stress: Light interception, radiation use efficiency and partitioning of assimilates. Field Crops Research, 70(3), 177–184.

    Article  Google Scholar 

  • Cosentino, S. L., Patané, C., Sanzone, E., Testa, G., Scordia, D. J. E. J., & o. A. (2016). Leaf gas exchange, water status and radiation use efficiency of giant reed (Arundo donax L.) in a changing soil nitrogen fertilization and soil water availability in a semi-arid Mediterranean area. European Journal of Agronomy, 72, 56–69.

    Article  CAS  Google Scholar 

  • del Pozo, A., Méndez-Espinoza, A. M., Romero-Bravo, S., Garriga, M., Estrada, F., Alcaíno, M., Camargo-Rodriguez, A. V., Corke, F. M., Doonan, J. H., & Lobos, G. A. (2020). Genotypic variations in leaf and whole-plant water use efficiencies are closely related in bread wheat genotypes under well-watered and water-limited conditions during grain filling. Science and Reports, 10(1), 1–13.

    Article  Google Scholar 

  • Del Pozo, A., Ovalle, C., Espinoza, S., Barahona, V., Gerding, M., & Humphries, A. (2017). Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. European Journal of Agronomy., 84, 16–22.

    Article  Google Scholar 

  • Earl, H. J., & Davis, R. F. (2003). Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95(3), 688–696.

    Article  Google Scholar 

  • Erice, G., Louahlia, S., Irigoyen, J. J., Sánchez-Díaz, M., Alami, I. T., & Avice, J.-C. (2011). Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environmental and Experimental Botany, 72(2), 123–130. https://doi.org/10.1016/j.envexpbot.2011.02.013

    Article  Google Scholar 

  • Erice, G., Louahlia, S., Irigoyen, J. J., Sanchez-Diaz, M., & Avice, J. C. (2010). Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Journal of Plant Physiology, 167(2), 114–120. https://doi.org/10.1016/j.jplph.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  • Farissi, M., Mouradi, M., Farssi, O., Bouizgaren, A., & Ghoulam, C. (2018). Variations in leaf gas exchange, chlorophyll fluorescence and membrane potential of Medicago sativa root cortex cells exposed to increased salinity: The role of the antioxidant potential in salt tolerance. Archives Journal of Biological Sciences, 70(3), 413–423. https://doi.org/10.2298/ABS171019001F

    Article  Google Scholar 

  • Farooq, M., Hussain, M., Wahid, A., & Siddique, K. (2012). Drought stress in plants: an overview. In Plant responses to drought stress (pp. 1–33): Springer.

  • Fghire, R., Anaya, F., Ali, O. I., Benlhabib, O., Ragab, R., & Wahbi, S. (2015). Physiological and photosynthetic response of quinoa to drought stress. Chilean Journal of Agricultural Research, 75(2), 174–183. https://doi.org/10.4067/s0718-58392015000200006

    Article  Google Scholar 

  • Flexas, J., Gallé, A., Galmés, J., Ribas-Carbo, M., & Medrano, H. (2012). The response of photosynthesis to soil water stress. In Plant Responses to Drought Stress (pp. 129–144): Springer.

  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39–50.

    Article  CAS  Google Scholar 

  • Inès, S. (2011). Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: Growth, water relations, osmolyte accumulation and lipid peroxidation. African Journal of Biotechnology. https://doi.org/10.5897/ajb11.1202

    Article  Google Scholar 

  • Ines, S., Talbi, O., Nasreddine, Y., Rouached, A., Gharred, J., Jdey, A., Hanana, M., & Abdelly, C. (2022). Drought tolerance traits in Medicago species: A review. Arid Land Research and Management, 36(1), 67–83.

    Article  CAS  Google Scholar 

  • IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Sciences, 30(1–2), 125–176.

    Article  Google Scholar 

  • Jifon, J. L., & Syvertsen, J. P. (2003). Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiology, 23(2), 119–127.

    Article  Google Scholar 

  • Jongdee, B., Fukai, S., & Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research, 76(2–3), 153–163.

    Article  Google Scholar 

  • Kruashvili, I., Bziava, K., Inashvili, I., & Lomishvili, M. (2016). Determination of optimal irrigation rates of agricultural crops under consideration of soil properties and climatic conditions. Annals of Agrarian Science, 14(3), 217–221. https://doi.org/10.1016/j.aasci.2016.08.006

    Article  Google Scholar 

  • Kumar, V., Shriram, V., Hoque, T. S., Hasan, M. M., Burritt, D. J., & Hossain, M. A. (2017). Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: Physiological and biochemical mechanisms (pp. 111–133). https://doi.org/10.1007/978-3-319-42183-4_5

  • Laisk, A., & Oja, V. (2018). Kinetics of photosystem II electron transport: A mathematical analysis based on chlorophyll fluorescence induction. Photosynthesis Research, 136(1), 63–82. https://doi.org/10.1007/s11120-017-0439-y

    Article  CAS  PubMed  Google Scholar 

  • Latifinia, E., Eisvand, H. R. (2022). Soybean Physiological Properties and Grain Quality Responses to Nutrients, and Predicting Nutrient Deficiency Using Chlorophyll Fluorescence. 1–13.

  • Lauriano, J., Ramalho, J., & Lidon, F. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica, 44(3), 404–410.

    Article  CAS  Google Scholar 

  • Lemaire, G., & Gastal, F. (1997). N uptake and distribution in plant canopies. In Diagnosis of the nitrogen status in crops (pp. 3–43). Springer.

  • Lemaire, G., & Millard, P. (1999). An ecophysiological approach to modelling resource fluxes in competing plants. Journal of Experimental Botany, 50(330), 15–28.

    Article  CAS  Google Scholar 

  • Li, Z., & Sun, Z. (2016). Optimized single irrigation can achieve high corn yield and water use efficiency in the Corn Belt of Northeast China. European Journal of Agronomy, 75, 12–24. https://doi.org/10.1016/j.eja.2015.12.015

    Article  Google Scholar 

  • Liu, M., Mu, L., Lu, Y., & Yang, H. J. C. S. (2021). Forage accumulation and radiation use of alfalfa under deficit irrigation. Crop Science, 61(3), 2190–2202.

    Article  CAS  Google Scholar 

  • Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005

    Article  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  CAS  Google Scholar 

  • Medrano, H., Escalona, J. M., Bota, J., Gulías, J., & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Annals of Botany, 89(7), 895–905.

    Article  CAS  Google Scholar 

  • Monteith, J. L., & Moss, C. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 281(980), 277–294.

    Article  Google Scholar 

  • Mouradi, M., Bouizgaren, A., Farissi, M., & Ghoulam, C. (2018). Assessment of deficit irrigation responses of Moroccan alfalfa (Medicago sativa L.) landraces grown under field conditions. Irrigation and Drainage, 67(2), 179–190. https://doi.org/10.1002/ird.2190

    Article  Google Scholar 

  • Mouradi, M., Farissi, M., Bouizgaren, A., Makoudi, B., Kabbadj, A., Very, A.-A., Sentenac, H., Qaddourya, A., & Ghoulam, C. (2016). Effects of water deficit on growth, nodulation and physiological and biochemical processes in Medicago sativa-rhizobia symbiotic association. Arid Land Research and Management, 30(2), 193–208. https://doi.org/10.1080/15324982.2015.1073194

    Article  CAS  Google Scholar 

  • Nunes, C., Moreira, R., Pais, I., Semedo, J., Simões, F., Veloso, M. M., & Scotti-Campos, P. J. P. (2022). Cowpea physiological responses to terminal drought—Comparison between four landraces and a commercial variety. Plants, 11(5), 593.

    Article  CAS  Google Scholar 

  • O’Connell, M., O’Leary, G., Whitfield, D., & Connor, D. (2004). Interception of photosynthetically active radiation and radiation-use efficiency of wheat, field pea and mustard in a semi-arid environment. Field Crops Research, 85(2–3), 111–124.

    Article  Google Scholar 

  • Papageorgiou, G. C. (2007). Chlorophyll a fluorescence: a signature of photosynthesis (Vol. 19). Springer.

    Google Scholar 

  • Savva, A. P., & Frenken, K. (2002). Crop water requirements and irrigation scheduling. FAO Sub-Regional Office for East and Southern Africa Harare.

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012a). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 26. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012b). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Teixeira, E. I., Moot, D. J., & Brown, H. E. (2008). Defoliation frequency and season affected radiation use efficiency and dry matter partitioning to roots of lucerne (Medicago sativa L.) crops. European Journal of Agronomy, 28(2), 103–111.

    Article  CAS  Google Scholar 

  • Waring, R., Landsberg, J., & Linder, S. (2016). Tamm review: Insights gained from light use and leaf growth efficiency indices. Forest Ecology and Management, 379, 232–242. https://doi.org/10.1016/j.foreco.2016.08.023

    Article  Google Scholar 

  • Willems, A. (2006). The taxonomy of rhizobia: An overview. Plant and Soil, 287(1–2), 3–14.

    Article  CAS  Google Scholar 

  • Yao, J., Sun, D., Cen, H., Xu, H., Weng, H., Yuan, F., & He, Y. (2018). Phenotyping of arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Frontiers in Plant Science, 9, 603. https://doi.org/10.3389/fpls.2018.00603

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Shi, S., Liu, Z., Yang, F., & Yin, G. (2019). Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. Journal of Plant Physiology, 232, 226–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to (M. Karama) the director of the experimental station of INRA for his assistance with the field work as well as all the technicians of the station.

Funding

This research was funded by ArimNet REFRMA project (Resilient water and energy efficient forage and feed crops for Mediterranean Agricultural systems).

Author information

Authors and Affiliations

Authors

Contributions

MM: Conceptualization, Methodology, Writing, Data curation. MF: Data curation, Methodology, Original draft preparation. YL, KO, and AK: Investigation. AS: Statistical analyses. AB: Visualization, Investigation. CG: Reviewing.

Corresponding author

Correspondence to Mohammed Mouradi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouradi, M., Farissi, M., Lahrizi, Y. et al. Water deficit effects on canopy light interception, chlorophyll fluorescence, and stomatal conductance in Moroccan alfalfa genotypes. Plant Physiol. Rep. 27, 469–480 (2022). https://doi.org/10.1007/s40502-022-00668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-022-00668-7

Keywords

Navigation