Skip to main content

Advertisement

Log in

A study on the role of Silica nanoparticles in alleviation of fluoride toxicity in rice (Oryza sativa L.) seedlings

  • Original Paper
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

The present research highlighted the reduction of fluoride toxicity in rice (Oryza sativa L.) plant by the use of silica nanoparticles of size 90 nm. Two varieties of rice (MTU 1010 and IR 36) were taken and aqueous solutions containing different concentrations of fluoride (1.0, 3.0 and 5.0 mg/L), silica (1.0, 3.0 and 5.0 mg/L) and their combination i.e., fluoride + silica (1.0, 3.0 and 5.0 mg/L) were taken as main treatments. The results revealed that at lower concentrations of fluoride (1.0, 3.0 and 5.0 mg/L) germination rate of both varieties of rice ranged from 90 to 100%. On the other hand, germination, root and shoot length, level of chlorophyll and carotenoid were found to have improved at lower concentrations of silica nanoparticle solutions only. There was not much enhancement in biomass of the varieties. However, the fluoride load in MTU-1010 was found to have been reduced by 35% and 56% on application of nanosilica solutions of at 3.0 and 5.0 mg/L, respectively; Nanosilica application also supported improved the health of rice plants with respect to seed germination, low level of root ion leakage and proline. Moreover, silica nanoparticles had positive impact on plant growth and pigment level in rice leaves. However, further research may be necessary to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almutairi, Z. M. (2016). Effective of nano-silica application on the expression of salt tolerance genes in germinating tomato (Solanam lycopersicum L.) seedlings under salt stress. Plant Ories Journal, 9(1), 106–114.

    CAS  Google Scholar 

  • Amin, F., Talpur, F. N., Balouch, A., Surhio, M. A., & Bhutto, M. A. (2015). Biosorption of luoride from aqueous solution by vulvite-rot fungus Pleurotuseryngii ATCC90888. Environmental Nanotechnology Monitoring and Management, 10, 30–37.

    Article  Google Scholar 

  • Arslin, I., & Khan, T. I. (2016). Effect of sodium fluoride on seed germination, seedling growth and biochemistry of Abelmoschuseseulentus. Journal of plant biochemistry physiology. https://doi.org/10.4172/2329-9029.170.

    Article  Google Scholar 

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36, 433–487.

    Article  CAS  Google Scholar 

  • Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bhaumik, R., & Mondal, N. K. (2016). Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Applied Water Science, 6(2), 115–135.

    Article  CAS  Google Scholar 

  • Cai, H., Dong, Y., Li, Y., Li, D., Peng, C., Zhang, Z., & Wang, X. (2016). Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves. Acta Physiologiae Plantarum, 38(6), 1–11.

    Article  CAS  Google Scholar 

  • Chakrabarti, S., Ptra, P. K., & Mondal, B. (2013). Uptake of fluoride by two paddy (Oryza ativa L.) varieties treated with fluoride contaminated wated. Paddy and Water Environment, 11(1), 619–623.

    Article  Google Scholar 

  • Cui, J., Li, Y., Jin, Q., & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science Nano, 7, 162–171. https://doi.org/10.1039/c9en01035a.

    Article  CAS  Google Scholar 

  • Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+-permeablechannels and involvement in programmed cell death andmetabolic adjustment. Journal of Experimental Botany, 65(5), 1259–1270. https://doi.org/10.1093/jxb/eru004.

    Article  CAS  PubMed  Google Scholar 

  • Dey, U., Chatterjee, S., & Mondal, N. K. (2016). Isolaton and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnology Report, 10, 1–7.

    Article  Google Scholar 

  • Dey, U., Mondal, N. K., Das, K., & Dutta, J. K. (2012). Dual effects of fluoride and calcium on the uptake of fluoride, growth physiology, Pigmentation and biochemistry of Bengal gram seedling (Cicerarietinum L.). Fluoride, 45(4), 389–393.

    CAS  Google Scholar 

  • Gao, S., Sun, R., Wei, Z. G., Zhao, H. Y., Li, H. X., & Hu, F. (2009). Size-dependent defluoridation properties ofsynthetic hydroxyapatite. Journal of Fluorine Chemistry, 130(6), 550–556.

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani, K., & Farhangi-Abriz, S. (2019). Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamustinctorius L) seedlings. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.02.087.

    Article  PubMed  Google Scholar 

  • Gill, S. S., & Tutaj, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Hajra, A., & Mondal, N. K. (2017). Effects of ZnO and TiO2nanoparticles on germination, biochemical and morphoanatopical attributes of Cicar arietinum L. Energy, Ecology and Environment, 2(4), 277–288.

    Article  Google Scholar 

  • Jha, S. K., Nayak, A. K., & Sharma, Y. K. (2009). Fluoride toxicity effects in onion (Allium cepa L.) grown in contaminated soils. Chemosphere, 76, 353–356.

    Article  CAS  Google Scholar 

  • Kabir, S. M. L., Rahman, M. M., Rahman, M. B., Rahman, M. M., & Ahmed, S. U. (2004). The dynamics of probiotics on growth performance and immune response in broilers. International Journal of Poultry Science, 3, 361–364.

    Article  Google Scholar 

  • Kalteh, M., Alipour, Z. T., Ashraf, S., Aliabadi, M. M., & Nosratabadi, A. F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risk, 4(3), 49–55.

    CAS  Google Scholar 

  • Khalaki, M. A., Ghorbani, A., & Moameri, M. (2016). Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyqnusin laboratory conditions. Journal of Rangeland Science, 6(3), 221–230.

    Google Scholar 

  • Kipgen, L., Bernien, M., Ossinger, S., Nickel, F., Britton, A. J., Arruda, L. M., et al. (2018). Evolution of cooperativity in the spin transition of an iron(II) complex on a graphite surface. Nature Communications, 9, 2984.

    Article  Google Scholar 

  • Koblar, A., Tavcar, G., & Ponikrar-Svet, M. (2011). Effects of airborne fluoride on soil and vegetation. Journal of Fluorine Chemistry, 132, 755–775.

    Article  CAS  Google Scholar 

  • Lie, Q. F., Ma, C. C., & Shang, Q. L. (2007). Effects of silicon on photosynthesis and ntioxidative enzymes of maize under draught stress. Journal of Applied Ecology, 18(3), 531–536.

    Google Scholar 

  • Maclachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41(7), 1053–1062.

    Article  CAS  Google Scholar 

  • Maitra, A., Dutta, J. K., & Mondal, N. K. (2013). Amelioration of fluoride toxicity with the use of indigenous inputs. Journal of Stress Physiology and Biochemistry, 9(3), 207–209.

    Google Scholar 

  • McDonagh, M. S., Whiting, P. F., Wilson, P. M., Sutton, A. J., Chestnutt, I., Cooper, J., et al. (2000). Systematic review of water fluoridation. BMJ, 321(7265), 855–859.

    Article  CAS  Google Scholar 

  • Mondal, N. K. (2017). Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India. Ecotoxicology and Environmental Safety, 144, 36–44.

    Article  CAS  Google Scholar 

  • Mukherjee, S., Yadav, V., Mondal, M., Banerjee, S., & Halder, G. (2017). Characterization of a luoride resistant bacterium Acinetoballer sp. RH 5 towards assessment of its water defluoridation capability. Applied Water Science, 7, 1923–1930.

    Article  CAS  Google Scholar 

  • Mushtag, A., Jamil, N., Riaz, M., Hornyak, G. L., Ahmed, N., Ahmed, S. S., et al. (2017). Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. Biological Forum-An International Journal, 9(1), 150–157.

    Google Scholar 

  • Nowicka, B., Civra, J., Szmanska, R., & Kruk, J. (2018). Improving photosynthesis, plant productivity and abiotic stress tolerance- current trends and future perspectives. Journal of Plant Physiology, 231, 415–433.

    Article  CAS  Google Scholar 

  • Pariona, N., Martinez, A. I., Hernandez-Flores, H., & Clerk-Tapia, R. (2016). Effect of agnetite nanoparticles on the germination and early growth of Quercusmacdougalli. Science of the Total Environment. https://doi.org/10.1016/jscitoten.2016.09.128.

    Article  Google Scholar 

  • Razzaq, A. R., Ammara, H. M., Jhanzab, T., Mahmood, A., Hafeez, S., & Hussain, S. A. (2016). Novel Nanomaterial to Enhance Growth and Yield of Wheat. Journal of Nanoscience and Nanotechnology, 2, 55–58.

    Google Scholar 

  • Reddy, M. P., & Kaur, M. (2008). Sodium fluoride induced growth and metabolic changes in Salicorriabrachiate Roxb. Water, Air, and Soil Pollution, 188, 171–179.

    Article  CAS  Google Scholar 

  • Sachan, P., & Lal, N. (2018). Effect of sodium fluoride on germination, seedling growth and photosynthetic pigments in Cicerarietinum L. and Hordeumvulgare L. MOJ. Journal of Ecology and Environmental Sciences, 3(4), 300–304.

    Google Scholar 

  • Santi, L. P., Nurhaimi, H., & Mulyanto, D. (2017). Effect of bio silica on drought tolerance in plants. IOP conference series: Journal of Earth and Environmental Sciences. https://doi.org/10.1088/17551315/183/1/012014.

    Article  Google Scholar 

  • Shahbab, S., Mustafa, G., Khan, I., Zahid, M., Yasinzai, M., Ameer, N., et al. (2017). Effects of fluoride ion toxicity on animals, plants, and soil health: A review. Fluoride, 50, 393–408.

    Google Scholar 

  • Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seed mill). Saudi Journal of Biological Science, 21(1), 13–17.

    Article  CAS  Google Scholar 

  • Tak, Y., & Asthir, B. (2017). Fluoride induced changes in the antioxidant defence system in two contrustingcultivers of Tritieumaestinum L. Fluoride, 50(3), 324–333.

    CAS  Google Scholar 

  • Valentoric, P., Luxova, M., Kolarovic, L., & Gasparikov, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Cell and Environment, 52(4), 186–191.

    Google Scholar 

  • Wei, C., Zhang, Y., Guo, J., Han, B., Yang, X., & Yuan, J. (2010). Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal of Environmental Science, 22(1), 155–160.

    Article  CAS  Google Scholar 

  • WHO (2011). Guidelines for drinking water quality. Geneva: World Health Organization.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Department of Science and Technology, Government of India (F. No. SR/ESI-141/2015, dated 25.07.2016) for conducting this research. The authors also sincerely thank all faculty members, other research scholars and M.Sc. students of the Department of Environmental Science, The University of Burdwan, for their academic and moral support in completion of the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naba Kumar Mondal.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest in the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D., Mondal, A., Sen, K. et al. A study on the role of Silica nanoparticles in alleviation of fluoride toxicity in rice (Oryza sativa L.) seedlings. Plant Physiol. Rep. 26, 200–209 (2021). https://doi.org/10.1007/s40502-021-00573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00573-5

Keywords

Navigation